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1. SUMMARY OF ACCOMPLISHMENTS

The major emphases of the research proposal submitted to Ohew flicto s,,l

Research in 1986 were in the development of new techniques for c'ohricti NktuI

identification using multiple sensor elements and performntww cot

eigenstructure-based high resolution methods for direction finding.

This research report concerns primarily with new developments (sin c the la.o1

report date) in the detection of signals from measurements made at the ou1:it ifU

set of spatially deployed sensor elements. Three key results that have tccn (bNInnCI

during this investigation is reported in section 2 with all details. To hc %pc-f xc. hc-%

are:

In the context of coherent signal classification, a spatial smoothing schemc it'.

suggested by Evans et al., and subsequently studied by Shan et al.. is further Ilrc%'11.

gated. It is proved in section 2.1 that by making use of a set of forward and cornple,

conjugated backward subarrays simultaneously, it is always possible to estimate any K

directions of arrival using at most 3K/2 sensor elements. This is achieved by creating

a smoothed array output covariance matrix that is structurally identical to a covariance

matrix in some noncoherent situation. By incorporating the eigenstructure-based

techniques on this smoothed covariance matrix, it then becomes possible to correctly

identify all directions of arrivals irrespective of their correlation.

Section 2.2 presents a detailed asymptotic analysis of a class of high resolution

estimators for resolving correlated and coherent plane waves in noise. These estima-

tors are in turn constructed from certain eigenvectors associated with spatially

smoothed (or unsmoothed) covariance matrices generated from a uniform arr:a,,. The

analysis is first carried out for the smoothed case, and from this the conventional

MUSIC (unsmoothed) scheme follows as a special case. Independent of the total

number of sources present in the scene, the variance of the conventional MUSIC esti-



1,414A siljiA Q'a -.,-w wit, g n hfmn to be zero within a first-order approxima-

A,,,. v43 ,na,, ,,i %, ,t V+*€M, 121 t in itoLmed case are used to obtain a resolu-

AMi,, ni-.+, fevof w+tvite. n,4.m , tid plane wave sources in white noise, and

!4.' J: - . lt ta, t . ut rwu unctrelated, equipowered plane wave

r, .t zc *a' ., ,,kk t wtoam presented in section 2.2 is new and

.,, i: ,.,r , c. ,0 .,2 h thc. permance evaluation of almost all

I kji , c , t!,,. ifl) r, .X.oV the doscons of arrival of multiple signals

,i i. h :,r'.t" 'dalcu with certain matrices generated from

, Via iot ,m ;+ ,ti tc rn ,ot ;rvre , m section 2-3. This is carried out by

,Z V-'4.0j 4r!,.W! pe.V o 01C sr 4mi4 tutacc: i.e.. in presence of uncorre-

A!t u + i 41.0tmor Mvw. !"h uJpcc spanned by the true direction vectors

,w t.i, t! o.'rv t., v-4 .ft w c'ivac C mr of corresponding to all, except the

,t of 4 - 4 the astra otiput covariance matrix. Further,

S i., ....... ,, .. La ftw.td5er pMtiurt!ation analysis is carried out to

u.-at . ,. ; ' ,.,of m. tcrn,, when the array output cross-covariances are

fvrimAre d frnm o,:c aa.A ,in it, ka t frwable configuration, unlike the MUSIC

;0,' -r'e. N€ ,.xA'd witt the direcow"-of-arrival estimator for this scheme in

, :w' ,ir¢c rerce ct?-rin to he :ern and the variance to he nonzero within a first-

order apIrnmtroo. In ;t, mrt faw'wabW configuration both bias and variance are

thown to he nirwern for the tame sciurce %c ne. Using these variance expressions.

:.; m tnresholds are obtained for two closely spaced sources in an equipowered

,ce,- .". :T-tr-tor performance of this algorithm in its most favorable configuration

is also hnwn ?n he in agreement ,with actual simulation results.

A list of publications orlginated under this contract is outlined in the next section.
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TECHNICAL REPORT

2.1 Forward/Backward Spatial Smoothing Techniques for

Coherent Signal Identification

2.1.1 Introduction

In recent years, considerable effort has been spent in developing high resolution

techniques for estimating the directions of arrival of multiple signals using multiple

sensors. These methods [1]- [4], in general, exploit specific eigenstructure properties

of the sensor array output covariance matrix and are known to yield high resolution

even when the signal sources are partially correlated. However, when some of the sig-

nals are perfectly correlated (coherent), as happens, for example, in multipath propa-

gation, these techniques encounter serious difficulties. Several alternatives have been

proposed [5]-[11] to take care of this situation, of which the spatial smoothing

scheme first suggested by Evans et al. [9], [10] and extensively studied by Shan et aL

[11], [12] is specially noteworthy. Their solution is based on a preprocessing scheme

that partitions the total array of sensors into subarrays and then generates the average

of the subarray output covariance matrices. Shan et al. have shown that when this

average of subarray covariance matrices is used in conjunction with the

eigenstructure-based multiple signal classification technique developed by Schmidt

[3], in the case of independent and identical sensor noise, it is possible to estimate all

directions of arrival irrespective of their degree of correlation. However, this

forward-only smoothing scheme makes use of a larger number of sensor elements

than the conventional ones, and in particular requires 2K sensor elements to estimate

any K directions of arrival.

In this report, we analyze an improved spatial smoothing scheme -called the

forward/backward smoothing scheme- and prove that at most [3K/2] (1) elements are
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enough to estimate any K directions of arrival. In addition to the formriad -utw.IIvy,

this scheme makes use of complex conjugated backward subwIrayi Wf ttw t.igira

array to achieve superior performance. In this context, it i. Intruciz,: to 1t10C Iftc

observations of Evans et aL [10], "The combined effect of "itiAl 3dt iLwharV atij

forward/backward averaging cannot increase an array' diecC1t1M 11TU111 c'zpuhldli

beyond [2M/3] coherent signals (with M reprc.enting th numn,,i (vi .ctit rc

ments)." While this statement is correct and coincid %,h the es,, , I !,,! I %,i,

et al. do not provide a proof for it. A special case (4 the Cc'at-T ,w ,,- it.o% cc C a

multipath coefficients are treated to be real. t, pinrd 3n 2111c I,,'cvrt ,o- i w

unrealistic assumption, as in practice all multipath ,. cr I , , , , .

plex numbers and in that case it is ncces,,.ar to rca,,, d!c t.-

For clarity of presentation, ScItln 212 1 dcka' . ., v(r-;,iC t, ,, C , , 1,

tion and proves that to estimate am K c,,,,¢ i it-n (0 . 1: 1, , .

have an array of J3K /21 scnsor, "l1x pti 4 , -r-,t ' -,i , , , - , ,

the Appendix.

2.1.2 Direction Finding in a Cohertt 'asirosmcst

Consider a uniform linear a4;. ff ,, -

signals from K narrombirxl ohe - .. :- 0'..

a e . .ar. - in R'-",i ,:

delayed, amplitudc,-%%crgtcd 4 ,( ,- - . ' - - -,,

where rik represcnti O~c co r'r-'.,ei ~

signLui') \r crep~e, "y~ .. ~ ~ - ~;.

sensor can te cpre-cd ;a

(1) The imn A , [' vi ,*, ;u d ,; " -r , 1- - .' I
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tM ~ W.% ( Willk. S at 14!LICU. 14911110Csr~p

:1Z I f: II t 41.w w,4 .14 1 .' ':r1 ithb CWt: It a% . k ctr. # c Wle d 1 ii,4 pit.

is 9it 4 -c~ It /w v -- wtw SC. Ia" 4" C t

!C -;t -1: A (,

.a :i ';,ciat LI -.. 4 .44 '', V, S :. 1," r ! 2 4a*rt ( .r , 42Cth dI tlg,, ,s~ t ha 1 pr mt ed

II t]L ' I,,: I:;,a . C':ipC.'a'r ' f, I the "~ eq ivalen 1, i - 4: ve , \ hen th stigns~ a r e

al$ 3L'9'f4ra~l. ci '% a prer, c -.n .pa4 :aJ Tm -thing scheme: a ts by. dividin'a:: n

ii wk! V c :t. A :.,c t tia

z~~~a'dd to 4 a. -gOtp- -~ v a z.tc .~ 9 cdu

fib- - - _ 1 (12)v

CA~~t; .A~ Vr't-(cc .c w ( 4 Anwcqwcnl14 b j;I no longer a legitimate

tre';n ~~t'rA-Y\r-c vi '-V ct'x alei to e'tornae arm true arrival angles.

me -*-i roil- 1,N. *-. tc r';r-iof R in thi, diwuossion has prompted

[wars-' rw 'd d ;Hs-un: San rt ta! to intrxiuce a preprocessing scheme [9] -

[111 A'ih' iairanfccs flU'Z rark for ihe equivalent R. in (8) even when the signals arc

all coherent. ibis; prcprrcs,,,ng spatial smoothing scheme starts lw dividi ng auni-

form linear array with If,, senors into uniformly overlapping subarrays of size A! (see

Fig. 1). let (t) stand for the output of the I subarray for 1 = 1, 2, ', L =
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Mo0 -M + 1, where L denotes the total number of these forward subarrays. Using (2)

- (6) we have
•T

X; 1r tX () M- t =AB -u(t)+nt(t) , 1 < </_(13)

where B -1 denotes the (I - 1)th power of the K xK diagonal matrix

B = diag [v, v,. " 'tK ; zi,= exp( -juw) , i = -,2 --- ,K . (14)

Then, the covariance matrix of the Ih subarray is given by

R1! = Alf 'R" (B' l)tA' + cl. (15)

i) i)%ltng [9 111 tict ic d t ih fth 'v.ard patia.,, smoothed covariance matrix. R f as

the i .mrpic rmcart of 1.c fi)r", rd z-.Or ray cm-arancc matricc% and this gives

k I - A I1- VIR-,; ,AR ' A *o~l (lt,)

In a irvkcn: (Vi t~.~-. ~ I- he fow~ia td- -mc,.thcd k(WTcc

R V 0 -R oi CC

'RC

(p. 0!;

t ,. |', I,.

'1. t'

R °p 6 : .
I-)
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Thus, if L =Mo -M + 1 >K or equivalently M o > M +K - 1, the smoothed source

covariance matrix Rf is nonsingular and R" has exactly the same form as the covari-

ance matrix for a noncoherent case. Therefore the conclusions in (9) will hold good

for Rf in (16), and as pointed out by Shan et al., one can successfully apply the eigen-

structure methods to this smoothed covariance matrix regardless of the coherence of

the signals. However, in this case, the number of sensor elements M o must be at least

(M +K - 1), and recalling from (9) that the size M of each subarray must also be at

least K + 1, it follows that the minimum number of sensors needed is 2K compared to

K + 1 for the conventional one. In what follows we present the improved spatial

smoothing scheme that makes use of the forward and appropriate backward subarrays

to reduce the required number of sensor elements to [3K/2].

Towards this purpose, additional L backward subarrays are generated from the

same set of sensors by grouping elements at { M o, M o - 1, -, M -M + 1} to form

the first backward subarray and elements at { M o -1, M o -2, ",M o -M }to form

the second one. etc. (see Fig. 1). Let x, (t) denote the complex conjugate of the out-

put of the 1I0 backward subarray for I = 1. 2, • • •, L, where L as before denotes the

total number (M,, - A + i) of these subarrays. Thus

! 'I() A llt t t) __ ''. t (B "-) = u (t + ) ,*( I1< 1(4 9

wherc is u. dcfincd in (14). The co -arilnce matrix of the i'h backward subarray is

emenl h%

R' E (x['(t A J AB R.(B )tA + ci (20)

R 41 F 7" f u n 0 M. -• R (B - (21)

., or- ;- A. -,'-€cd hak-ard ue vi.rra crnvariancc matrix Rh

t' , €.,rn£'e( ,.i ,,; , .', ,;;a °4 c('r c 2 ,t ,"'~ i C.
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Rb LR =ARbAt2 1  (22)

1=1

In a competely coherent environment R, is given by (10) and in that case using (10) in

(21) R simplifies to

R : t ,  (23)

where

s 66 2  / ] 6 T;' (M - 1)..
= -16 2.,1K ;k ='; , k = 1,2,.,K (24)

with Vk, k = 1, 2, - - , K as defined in (14). Finally, using (23) the backward-

smoothed source covariance matrix Rb is given by

bA L Bt - 1  1 1Eb  B - R. (B -)t = -LE st  (25)
L aL

!=1 u

where

E= [6,B6, B6,'  , BL-16] =FV (26)

with V as in (18) and

F = diag [6 bi 2, ".. , I K ]"(27)

Reasoning as before it is easy to see that the backward spatially smoothed covariance

matrix Rb will be of full rank so long as R b is nonsingular, and this is guaranteedu

whenever L >K. Again, it follows that the backward subarray averaging scheme also

requires at most 2K sensor elements to estimate the directions of arrival of K sources

irrespective of their coherence.

It remains to show that by simultaneous use of the forward and backward subar-

ray averaging schemes, it is possible to further reduce the number of extra sensor ele-

ments. To see this, following Evans et al. [10], define the forward/backward smoothed

covariance matrix R as the mean of R" and Rb; i.e.



- 13-

Rf +R'(28)

Using (16), (17), (22) and (25) in (28) we have

ft = A -- (CC+ EE)] At + o2 Au A' + o21 (29)

with

fu = -- [CC t +EE ] = -G (30)

Here

G [a, Ba, B2a,. , BL-la,6, B6, B26, BL-16]

[DV I FV] = D[VI HV] ADG 0 , (31)

with D, V as in (18) and

H =diag[*1 ,s 2, "'*] ; ek = 6 k/ak , k = 1,2,. ,K. (32)

We will now prove that the modified source covariance matrix k,, given by (30) will be

nonsingular regardless of the coherence of the K signal sources so long as 2L >K,

provided that whenever equality holds among some of the members of the set

{ Ek }K 1 in (32), the largest subset with equal entries must at most be of size L.

To appreciate this restriction, first consider the case where all ck, k = 1, 2, ••,

K are equal. In that case it is easy to see that Go and hence Rku will be of rank

min(L,K) irrespective of the backward smoothing. However, in practice this equality

condition almost never occurs. This is because c in (1), which represents the com-

plex attenuation of the k"' source with respect to the reference source, is a signal pro-

perty, and 6k in (24), which is a function of the interelement phase delay of the k a'

source with respect to the reference element, is mainly an array geometry property.
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lhu.ft Si 1 . n A -. . ' . K tiI be distinct and the simultane-

,,t ,.hLt- t-4t 411l u4 tlbe., nuars it an almost never occurring event. From

thcte w.r.1.f, 1.1 k , Lt, tLt the at fcSictios on the equality among some

of the t4, wtu alett;% L,.) f b cd To be pciftc with regard to these restric-

0 t fe am I. L.anJ .WI.L". K. (33)

A ipcoal :A,- of tbe gcctal tituJatitu. Aherc all o,. 4 - 1.2. " K. in (1) are

real, Ls trcatcd tn [ 131 In that c'c uisin (24) and (32) in (31) it is easy to see that GO

Ls a Va lcrmni rn arLy ich d ,tatw columns and hcncc is of rank K so long as

2L>K. T'h%,. hvc~cr. ts an unraclistic a.ssumption. as in practice. all o,s will be

inmariably complcx numbers and in that case it is nccc%,tary to argue differently as fol-

lows.

From (30). Am will be nonsingular so long as G is of full row rank, and using (31)

this is further equivalent to having full row rank for G0. Clearly. for G (or GO) to have

full row rank it is necessary that 2L >K and with L = M -A% + 1. this reduces to

2M_ >2M +K -2. Again rcc-!!ing that in the presence of K signals the size Af of each

subarray must be at least K + 1, it follows that the number of sensors M° needed must

satisfy 2M >3K or, equivalently, the min;mum number of sensors must be at least

[3K/2]. To see that this requirement is also sufficient, consider the quadratic product

ytGoGoY = ytVVty + ytHVVtHty (34)

where y is any arbitrary K x I vector. We will show that

YtGoGtY > 0 (35)

for any y /O, thus proving the positive-definite property of GoGt or . Clearly (35)

needs to be demonstrated only for a typical y0 C N (Vt) , the null space of Vt. In that

case Vty 0 = 0 and hence the first term in (34) rcuces to zero. To pro-c our claim, it
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is enough to show that for such a typical y0, Hty0 does not belong to N (Vt). Since the

Vandermonde structured matrix Vt is of full row rank L, the dimension of N (Vt) is

K-L. Let vL +I VL +2' "", vK be a set of liniearly independent basis vectors for

N (Vt). With respect to the basis vectors for the K-dimensional space, these null

space basis vectors can always be chosen such that [14],

V1 = [vII, v2".""' ,0,", 0, 1, 0',., ] . (36)

(In (36) the 1 is at the I h location.) These v,, I = L + 1, L +2, , K are linearly

independent and, moreover, for any j E { L + 1, L + 2, ., K }, using the diagonal

nature of H it is also easy to see that Htv. is linearly independent of the remaining v1,

I =L+1, --- ,K, I tj. Further the pairvj andH t vj,j = L+I,L+2, "",K, is

also linearly independent of each other. To see this note that because of the full row

rank property of Vt, at least one of the v1, i = 1, 2, ... , L in (36) must be nonzero

for every 1. Let v be such an entry in v.. Then the minor formed by the ith and j th

rows of the matrix [ v I Htv ] has the form

1 0) = %j( Ci - i ) (37)

and is nonzero from (33). Thus the matrix [v II Htvj I is of rank 2. This proves the

linear independence of vj and Ht iv.. From the above discussion it follows that Ht v. is

linearly independent of v j = L +1, L +2, "-, K and hence Htvi N(Vt), j=

L + 1, L + 2, K. Now for any y0 E N (Vt) we have

K
yo =  E k., (38)

j.L +I

which gives

K

Htyo = E kj Hv. (39)
j-L I
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Since all k. cannot be zero in (39), it follows that Hty 0  N(Vt) and hence

Vt Hty 0  0. This proves our claim and establishes that ft. will be nonsingular under

the mild restrictions in (33). In that case the eigenvalues of ft satisfy A1> 2 _ ...

>AK >A K +1 x+ 2  " , = a2. Consequently, as in (9), the eigenvectors

corresponding to equal eigenvalues are orthogonal to the direction vectors associated

with the true directions of arrival; i.e.

_tflia(wk) = 0, i = K+I,K+2 ",M, k = 1,2, ,K (40)

Here , 2, "', ,f are the eigenvectors of ft corresponding to the eigenvalues A1,

A2, - -, A , respectively.

To summarize, we have proved that so long as the number of sensor elements is

at least [3K/2], (with K representing the number of signal sources present in the

scene), it is almost always possible to estimate all arrival angles irrespective of the sig-

nal correlations by simultaneous use of the forward and backward subarray averaging

scheme. Since the smoothed covariance matrix A in (28) has exactly the same form as

the covariance matrix for some noncoherent situation as in (8), the eigenstructure-

based techniques can be applied to this smoothed covariance matrix, irrespective of

the coherence of the signals, to successfully estimate their directions of arrival.

The Appendix extends the proof for the forward/backward smoothing scheme to

a mixed source scene consisting of partially correlated signals with complete coher-

ence arrong some of them.

2.1.3 Simulation Results

In this section simulation results are presented to illustrate the performance of

the forward/backward spatial smoothing scheme and to compare it with the conven-

tional eigenstructure-based techniques [3].

Fig. 2 represents a coherent source scene where the reference signal arriving

from 700 undergoes multipath reflection, resulting in three additional coherent arrivals
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along 45*, 1150 and 127". A six-element uniform array is used to receive these signals.

The input signal-to-noise ratio (SNR) of the reference signal is 5 dB, and the attenua-

tion coefficients of the three coherent sources are taken to be (0.4,0.8), (-0.3, -0.7)

and (0.5, -0.6), respectively. In the notation a = (a, b), here a and b represent the

real and imaginary parts, respectively, of the complex attenuation coefficient a. Three

hundred data samples are used to estimate the array output covariance matrix using

the standard maximum likelihood procedure. The application of the conventional

eigenstructure method [3] to this covariance matrix resulted in Fig. 2.a. However, first

applying the forward/backward spatial smoothing scheme with two forward and two

backward (L =2) subarrays of five (M =5) sensors each, and then reapplying the

eigenstructure technique on the smoothed covariance matrix A resulted in Fig. 2.b. All

four directions of arrival can be clearly identified and the improvement in perfor-

mance in terms of resolvability, irrespective of the signal coherence, is also visible in

this case.

2.1.4 Conclusions

This report reexamines the problem of locating the directions of arrival of

coherent signals and in that context a spatial smoothing scheme, first introduced by

Evans et al. and analyzed by Shan et al., is further investigated. It is proved here that

by simultaneous use of a set of forward and complex conjugated backward subarrays,

it is always possible to estimate any K directions of arrival using at most [3K/2] sen-

sor elements. This is made possible by creating a smoothed array output covariance

matrix that is structurally identical to a covariance matrix in some noncoherent situa-

tion, thus enabling one to correctly identify all directions of arrival by incorporating

the eigenstructure-based techniques [31 on this smoothed matrix. This is a consider-

able saving compared to the forward-only smoothing scheme [11] that requires as

many extra sensor elements as the total number of coherent signals present in the

scene.



-18-

Appendix

Coherent and Correlated Signal Scene

We will demonstrate here that the forward/backward smoothing scheme dis-

cussed in section 2.1.2 readily extends to the general situation where the source scene

consists of K +J signals u 10), u2 (t), .. , uK (t), u K +(t), ..., UK +J (t), of which the

first K signals are completely coherent and the last (1 + 1) signals are partially corre-

lated. Thus the coherent signals are partially correlated with the remaining set of sig-

nals. Further, the respective arrival angles are assumed to be 01, 02, , 0K I OK +It

•-• 0K +j. As before, the signals are taken to be uncorrelated with the noise and the

noise is assumed to be identical and uncorrelated from element to element. With sym-
.tI

bols as defined in the text and using (2), the output xi (t) of the i sensor element at

time t in this case can be written as

K K +J
xi(t) = u (t) E ak exp(-j(i -)wk) + Uk(t)exp(-j(i -1) k) +ni(t),

k -I k -I

i= 1,2,' -,M. (A.1)

With x(t) as in (3), this gives

x(t) = iv(t) + n(t), (A.2)

where

A / K [a(wI). a(w2),. , a(WK), a(wK + d). ,(wK +J] (A.3)

with a(k) ;k = ,2,'", K +J as defined in (7) and

Here

T
u1( = IU1 (t),u 2 ),' ... ,UK(t) = u1 (t)a (A.5)
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with a as in (10) and

u2 () = [ux+I ( t ) , uK+ 2 (t), ' ' " , +(t )]T (A.6)

Following (13)-(17), (19)-(20), (25) and (28), the forward/backward smoothed

covariance matrix A in this case can be written as

ft = AR!oA t + 21, (7)

where

k0- 2(R, + R Y!1-).  (A.8)

I,,1

It remains to show that I is of full rank irrespective of the coherency among some of

the arrivals. Here

i=[ 0 1 B] (A.9)

where

B, = diag [I,,1, V,2, ... I K ](A. 10)

and

B2 = diag [u/+ 1, VK+ 2 " ''K +J (A.11)

with vk ,k =1,'" ,K +J as given by (14) and

R E~~~v [t] R 11 R 12 ] (A. 12)
VR R

R -E[vt)vt(t)] = [R 2  R22"

Using (A.4) - (A.6), it is easy to see that

R t t (.3
R1 = E[u,(t)u1 (t)] = aa (A.13)

where a is as before and E [ ju IQ ) 2 j] = 1. Similarly

R12 = E[ U,(t)Ut(t) I a-yt (A.14)

with
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T
.. .I(A.15)

where

',i 4E[u1 (t)u;,j(t)], i = 1, Z ,J, (A.16)

and

R22 = E[u2(t)u2(t) ]. (A.17)

From the partially correlated assumption among the later J signals, it follows that

their correlation matrix R2 is of full rank and hence it has the representation

= A A (A-18)

where A is again a full rank matrix of size J xJ. In a similar manner following (21), RO

can be written as

It= . , (A.19)

and proceeding as before,

R I = 6 6 1 ' (A.20)

with 6 as in (24) and

'12 - (A.21)

with

il iz,""". is 1 ,(A .22)

where

L , i = 1,2,. ,J. (A.21)

Here -y is as defined in (A.16) and yK is obtained by extending the definition in

(14). Further,

2 = B2 R 2 (B2 - = t (A.24)



with

whc1Ic A A#Aufl Ll 4 II 94tk tf!Xf-*i C4E btC 1 Uxl (t~ Ayh AZ-) m (A-S[

zmptdc4 ti)

I c. G -G G . 0

G 1 . - - (K B * ..BK (.8

21. S2

= a. = G G 6, G ,G .B 6], (A.27)

G, - [.B .••B,- • ,B ' , (A.28)

"- ,B ],,BA,(A.29)

and G4 satisfics

GGt= G2Gt+CGtG (A.30)
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Defift

G1  01
( G2 G4 •(.1

Then

I -- t
0 = W-GG. (A.32)

Clearly the rank of !k is the same as that of G. An examination of (A.27) shows that

G1 G? is the average of the source covariance matrix corresponding to the completely

coherent situation (see (31)) and hence from the result derived in section 2.1.2, it fol-

lows that G1 Gt is of full rank K so long as L>[K/2]. Now it remains to show that G

is also of full row rank J , which together with (A.31) implies that 4, and hence 0 is of

full rank K +J. From (A.28) - (A.30) we have

G Gt=G Gt- G Gt
4 4 3 3 2 2

B (BAAB
= 2 _AA 1)t"") B (A-33)

In the first summation here, A and -y are matrices of ranks J and 1 respectively and

hence the matrix (AAt - j -t' ° at least of rank J -1. Once again, resorting to the

argument used in establishing (35) in section 2.1.2, it follows that each summation and

hence G4 is of full row rank J so long as L > 1. This establishes the nonsingularity of

!k0 for L > [K/2]. As a result, the smoothed covariance matrix k in (A.7) has struc-

turally the same form as the covariance matrix for some noncoherent set of K +J sig-

nals. Hence, the eigenstructure-based techniques can be applied to this smoothed

matrix irrespective of the coherence of the original set of signals to successfully esti-

mate their directions of arrival. This completes the proof.
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Fiv. 2Direction finding in a coherent scene. A six-clemcnt uniform array receives signals from fo~ur
coherent sources ,with muhtipath coefficients (0.4,0.8), (1,.,(-0.3-.7) and (0.5,-4.6). Thc arrival
alngles ofr the four coherent signals arc 45",7(r, 115" and 127'. Input SNR of thc reference signal is 5
dB. Three hundred data samples arc used to estimate the covariancc matrix. (a) P(O) using Ihic
conventional MUSIC scheme. (b) P(O) using the forward1/backward sm0lhing s.hcmc.
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2.2 Performance Analysis of MUSIC-Type High Resolution Estimators

for Direction Finding in Correlated and Coherent Scenes

2.2.1 Introduction

Eigenstructure-based techniques that yield high resolution have been a topic of

great interest in array signal processing since the well-known works of Pisarenko [1],

Schmidt [2] and others [3] -[8]. These methods, in general, utilize certain eigenstruc-

ture properties resulting from th special structure of the sensor array output covari-

ance matrix for planai wavefronts [2] to generate spectral peaks (or equivalently spec-

tral nulls) dlong the actual directions of arrival and are known to yield high resolution

even when some of the sources are partially correlated. In coherent situations, such as

multipath propagation, a direct application of these techniques results in ambiguity,

and specific modifications have been suggested to remedy this problem [9] -[11]. Of

these, the spatial-smoothing scheme, originally suggested by Evans et al. [9] and stu-

died by Shan et al. [10], is based on a preprocessing scheme that for a uniform array,

partitions the total array of sensors into subarrays and then generates the average of

the subarray output covariance matrices. Further, in the case of independent and

identical sensor noise, this matrix is shown to be structurally equivalent to that in some

correlated scene thereby making it amiable to the above mentioned methods. How-

ever. this smoothing scheme - we call it the forward-only smoothing scheme - requires

2K sensor elements to estimate K coherent directions of arrival. In contrast to this, a

modified scheme also proposed by Evans et al. - we call it the forward/backward

smoothing scheme - uses both forward and backward subarrays for averaging and is

shown to require only [3K/2](1) sensors to estimate any K directions of arrival [9, 12].

When the exact ensemble array output covariances are used, all these methods

result in unbiased values (i.e., zero for the null spectrum) along the true arrival angles

irrespective of signal-to-noise ratios (SNRs) and angular separations of sources.

(1) The symbol [xj stands for the integer part of x.
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However, when these covariances are estimated from a finite number of independent

snapshots, these techniques exhibit deviations from their ensemble average values.

These deviations depend on the specific scheme under consideration together with the

SNRs and other signal and array specifications. AU this taken together determine the

resolution capacity of the technique under consideration.

This report presents a performance analysis of these smoothing techniques when

covariances estimated from a large sample size are used in place of their ensemble

averages. The analysis for the general forward/backward scheme is carried out first

while the forward-only scheme and the conventional unsmoothed (MUSIC) scheme

are derived as special cases.

This report is organized as follows: For the sake of completeness, the forward-

only and the forward/backward smoothing schemes are summarized in section 2.2.2.

Using results derived in Appendix A, section 2.2.3 presents the first-order approxima-

tions to the mean and variance of the null spectrum corresponding to the

forward/backward, the forward-only and the standard MUSIC schemes. The bias

expression in the case of the forward/backward scheme is used to obtain a resolution

threshold for two completely coherent, equipowered plane wave sources in white

noise; and this result is compared to the resolution threshold obtained by Kaveh et al.

[13] for two uncorrelated, equipowered plane wave sources in white noise. Finally, in

Appendix B, several identities that are found to be useful for performance analysis are

developed.

2.2.2 Problem Formulation

Let a uniform array consisting of M sensors receive signals from K narrowband

sources u (t), u 2(t ), "" , UK. Q), UK. + 1' uK (t), of which the first Ko signals are

completely coherent and the last (K -K0 + 1) signals are partially correlated. Thus the

coherent signals are partially correlated with the remaining set of signals. Further, the

respective arrival angles are assumed to be p 02, ... 0K 0K + 1, "", 0K with respect

to the line of the array. At any instant, the first Ko signals u 1(t), u 2(t), ... ItKo(t ),
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are phase-delayed, amplitude-weighted replicas of one of them - say, the first - and

hence

uk(t) = akuI(t), k = 1,2,., K0  (1)

where ak represents the complex attenuation of the k signal with respect to the first

signal, u (t). Using complex signal representation, the received signal xi (t) at the il'

sensor can be expressed as

K
xi(t) = E uk(t)exp( -j7r(i -1)cosOk ) + ni(t). (2)

k-i

Here the interelement distance is taken to be half the wavelength common to all sig-

nals and ni (t) represents the additive noise at the ith sensor. It is assumed that the sig-

nals and noises are stationary, zero mean circular Gaussian 2 independent random

processes, and further, the noises are assumed to be independent and identical

between themselves with common variance 2. Rewriting (2) in common vector nota-

tion and with wk = 7r cosOk ; k = 1, 2, "", K, we have
T

x(t) = [x(t),x 2(t), "" ,XM(t)] = Au(t) + n(t) (3)

where

U(t) [ U2(t),U2 () , UK (t)]T n(t) [n(t),n 2(t), rM(t)] (4)

and

A = v"M [a(w ), a(w2), , a(wK)] (5)

Here a(wk ) is the normalized direction vector associated with the arrival angle 0., i.e.,

(2) A complex random vector z is defined to be circular Gaussian if its real part x and
imaginary part y are jointly Gaussian and their joint covariance matrix has the form 114,171

E [x]I [XTYT ]]I = I. [ V _W]

where z = x + j y. When z has zero mean, its covariance matrix is given by

E [zzt] IE[(x + jy)(xT -jyT)] = V + jW. Clearly, E(zZT) = 0. Here onwards T and t

represent the transpose and complex conjugate transpose, rcpectively.
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a(wk)- [ l ' exp(-jwk)Iexp(-2wk) )I 'exp(-j(M1)wk)] (6)

Notice that A is an MxK Vandermonde-type matrix (M >K) of rank K and from our

assumptions it follows that the array output covariance matrix has the form

R = E [x(t)xl(t)] = ARu At + 2. (7)

The source covariance matrix R. = E [u(t) ut(t)] remains as nonsingular so long as

the sources are at most partially correlated. In that case AR. At is also of rank K and

hence, if A > 2 .> - >AM and #,, 92, #M are the eigenvalues and the

corresponding eigenvectors of R respectively, i.e.,

M

I=1
2

then the above rank property implies that AK +l1 = AK+2 = ... = Am = o and conse-

tquentlyita(wk) = 0, i =K+1,K+2, ,M ;k =1, 2," ,K. Hence the nulls of

Q (w) given by

Q(w) = Ifa(w) 2 = - k (9)
k=K+I k-I

correspond to the actual directions of arrival. However, when some signals are

coherent as in (1), R. is singular and the above conclusions are no longer true.

To circumvent this crucial missing rank problem, in the forward-only spatial

smoothing scheme[9, 10] a set of overlapping forward subarrays are generated by

dividing a large uniform array with M, sensors into sets of size M. Let xf(t) stand for

the output of the Ith subarray for I = 1, 2, • • •, L 4-Mo -M + 1 where L denotes the

total number of these forward subarrays. Then the covariance matrix of the Ith subar-

ray is given by

RJ = E [x(t)(f (t)) t ] = ARf At + a21 (10)

where R{, is the source covariance matrix (singular) of the 1' forward subarray and
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the average of these subarray covariance matrices has the form

Rf = - -aA+o2.(1

Here Rf represents the smoothed source covariance matrix of rank p(Rf) = K -

K0 + min(Ko , L ). Thus if L = M o, -M + 1 >K, the smoothed source covariance matrix

is nonsingular and Rf has exactly the same form as the covariance matrix in some

noncoherent situation.

To improve upon the number of extra elements needed for smoothing, a set of L

additional backward subarrays are generated in [9, 12] from the same set of sensors by

grouping elements at M o, M o -1, ... , M o -M + 1 to form the first backward subar-

ray, etc. Let x!b(t) denote the complex conjugate of the output of the If' backward

subarray and R b the corresponding subarray covariance matrix for I = 1, 2, "", L.

Then

R~b = E [ Ibt)( I(t))I] = AR b ,A t + a 2I1 (12)

where Rb. is the source covariance matrix of the 1 A backward subarray and the aver-

age of the subarray covariance matrices has the form

1 L -L lL b IA t 2Rb -E R ='A , IARul A -AFA+ . (13)
I- LI-uI)

Combining the forward and backward smoothing schemes together, we define the

forward/backward (f/b) smoothed covariance matrix as

At + 2 M=
2(Rf + Rb) AR. At I - - #t (14)

where the smoothed source covariance matrix

1 if b

R,= -(Rf + Rb) (15)

can be shown [12] to have rank p(R,) = A Ko + min(Ko, 2L). So, for R to possess
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full rank, 2L >K or 2Mo, >2M +Ko -2. Recalling that in a coherent situation

(K =K o ), M must be at least K + 1, it follows that the minimum number of sensors

must be at least [3K/2]. More precisely, the above conclusion is valid, provided that

whenever equality holds among some of the member of the set {k }K-= with ek =

(a/ak ) exp(j (M - )bk), the largest subset with equal entries is at most of size L

[12]. Under these conditions A. is of rank K and hence the eigenvalues of & satisfy

l>A '' >K > \K+l = K +2  =\ M= 2 . Consequently, as in (9) the nulls of

Q (w) given by

M t 2 K t 2QMw E 1 Ifl a(w) I E A [la(w.) 1 (16)

k=K+l k-1

correspond to the actual directions of arrival (3)

So far we have assumed that an ensemble average of the array output covari-

ances are available. Generally, a finite data sample is used and estimation is carried

out for the unknowns of interest using the maximum likelihood procedure.

For zero mean M-variate (circular) Gaussian data x(, ) ; n = 1, 2, " ', N in (3),

with unknown MxM covariance matrix R, the maximum likelihood (ML) estimate S

of the covariance matrix is given by [16, 17]

N E x(t ) xt(t,, ) . (7

n.i

Using the invariant property of the maximum likelihood procedure, the corresponding
estimates St, S, and S for the unknown smoothed matrices Rf, Rb and A can be con-

structed from S by the same rule that is used in constructing Rf, Rb and Rk, respec-

tively, from R. Thus, for example,

= I (S + Sb (18)

and

(3) Notice that these arguments can be readily extended to several groups of signals where the
signals arc coherent within each group, but incoherent between groups. In that case the
additional number of sensors required to estimate all incoming arrival angles can bc shown to
be [Km/.j2 ], where Km, represents the size of the largest coherent group of signals.
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L 
1 

L 

(19)

Sf __ Lt, N S[= -i (n)(xf(n))t. (19)

In what follows we study the statistical properties of these estimated smoothed covari-

ance matrices and their associated sample estimators for direction finding.

2.2.3 Performance Analysis

2.2.3.A. Main Results

In this section the statistical behavior of the forward-only and forward/backward

smoothing schemes is examined. These results are made use of in deriving expres-

sions for the bias and the resolution threshold of two equipowered coherent sources,

and comparisons are made with similar results obtained for uncorrelated sources [13].

Towards this purpose, consider the eigen-representation

9 = fLt t (20)

for the ML estimate of the f/b smoothed matrix , with

L = [6 11 2,"" K, EK+1" 9,EM]

L., =r, d,<, [,G+2,. •. •[I, I,
and

E e=IM

where ii. >O, i = 1,2,... , M for uniqueness. Here the normalized vectors

e, E2,. ,eK are the ML estimates of the eigenvectors ,, A2, " K of A respec-

tively. Similarly, l1, 12', t are the ML estimates of the K largest and distinct

eigenvalues A1, A2 ," • •, Ax and the mean of IK + 1," fm is the sample estimate of the

repeating lowest eigenvalue a2 of ft. Following (16), the sample direction estimator

can be written as
M t 2K2O(w) = M I',a(w)I 2 = 1- I /a(w)I 2 . (21)

k=K+1 k-1

The asymptotic distribution of the estimates of the eigenvalues and eigenvectors
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associated with the distinct eigenvalues of iR is derived in (A.31) - (A.32) Appendix A.

Corresponding results for the forward-only scheme in (11) and the conventional

scheme in (8) can be readily evaluated as special cases of this general result. It is also

shown there that the estimated eigenvalues and a specific set of corresponding unnor-

malized eigenvectors are asymptotically (in the sense of large N) jointly Gaussian with

means and covariances as derived there (See (A.33) and (A.34)). Further, after

proper renormalization and using an exact relationship among the different sets of

eigenvectors, it is shown in Appendix A that (see (A.39))

S1 M riik t 2E L(wJ ( w) + F, E ( AIPa)

- M fil at(w)&fifa(w) + o (1/N 2 ) (22)

k-1 i-1 (Ai - k)( - A)
k*i l,*i

where from (A.16)

fikA1i L L t f - -tb b &-t b
-i 4LT E E -0 [iIpqRPk PRJfiJ + fi pqPkfiIRqp jJ

p-i q -

+ ~IR~ ;b;V-tRqbk +:. t Rq .:itjRq3](3
p :Rq. -11t'Yj ' oq O + q 'i p f.Rfb b Rpof (23)

with i, i = 1, 2, • • ,M as defined there and Rtq, Rb as in (A. 17).

Similar bias expressions for the forward-only smoothing scheme can be obtained

from (22) by replacing (23) with (A.18). In particular for the conventional

(unsmoothed) MUSIC case with (A.19) in (23), after some simplifications (22)

reduces to

Q^ + -I [ (M K A) (P1ta(w)22Q(w) +12) (IN

2
SK I#!__LO 1f 2 QW)2

=~ ~~ -Q(W) +g ) ( K)+ 1N (4
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where Ai , ii = 1, 2, • •, M, are as defined in (8) and Q (w) is given by (9).

Similarly, from (A.42)
Var(d(W)) GI(W) =

2K K M M Re[ rf~ja a(w) + fkji a~w),l fi a~w)) a~w)pk t j\ab

i=1 j=1 k=l 1=1
khi I1j

+ o (1/N 2) (25)

which for the conventional MUSIC case reduces to

2(k I 1ia() I' Ifa(w) 12

KE EA 2
i=1 (A - 2 =1t(w )2~~)2 (/

i=1 k i

k,*i

_ ( 2 Pa( 12 Ia(w)I2 6a(wI +  (11N /

2 K M ) Ak i u)I'IP'a( )1 1 N2
i=1 k=K+l (A, - Ak)

2

2 K A____ 12 2. (26)
N Q(w)E - Ifita() 2 +o(1N2i-i 1  -2)2

Since along the actual arrival angles, Q(wk) = 0, k = 1, 2,' ., K, (26) allows us to

conclude that within the above approximation,

a'2(wk) = 0 ; k = 1, 2,..., K (27)

i.e., in all multiple target situations, where the conventional MUSIC scheme is applica-

ble, the variance of the estimator in (21) along the true arrival angles is zero within a

first-order approximation. Although at first this conclusion does not seem to agree
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with the results of Kaveh et al, for a two-source case (See (30) in [13]), an algebraic

manipulation shows that within the above approximation, their Var(15(Wk)) = 0,

agreeing with this result.

The general expressions for bias and variance in (22) and (25) can be used to

determine the required sample size for a certain performance level or to arrive at use-

ful resolution criteria for the forward-only or the f/b smoothing schemes. Though the

general cases are often intractable, a complete analysis is possible for the f/b scheme

with L = 1, which of course can decorrelate and resolve two coherent sources. As

shown in the next section, this case leads to some interesting results, including the

resolution threshold for two completely coherent equipowered sources in white noise.

2.2.3.B Two-Source Case

Consider the special case, where the two sources present in the scene are com-

pletely coherent with each other. In that situation, the array output data together with

its complex conjugated backward version x,(t) ; n = 1, 2, "" , N, (f/b smooihing

with L = 1) can be used to decorrelate the incoming signals, thereby making it possi-

ble to estimate their arrival angles. For two equipowered sources, the bias and vari-

ance of the associated sample estimator can be computed by using (A.20) in (22) and

(25), respectively. After a series of algebraic manipulations for mean value of the esti-

mator we have

E [Q(.)] = O(u)) + -V E -

Let i(w) and rt(w) denote the bias in the f/b smoothing scheme and the conventional

MUSIC scheme. Then from (28)

E~w E[(w)J-Qw

12 t 2,

,2N , (M - 2) I,,a(,)l -((w) I o(11 ,V
2 ) 2
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and from (24) with K 2 we have

2
112 Q (]i22

1()22[(M - 2)I1fia(w)I-~) o1N) (30)

To evaluate variance, let qijld denote a typical term in (25). Then

22 2 2 2 M Afo U)= N(q 1122 + q 12, + q 2112 + q2211) + IV E ,E F qijk"

i-1 j-1 k-3 1-3

Using (A-20) it is easy to show that the terms within the first parentheses add up to

zero, and by repeated use of (A.20) over the remaining terms it can be shown that

-2

S 1 2 2

+ E Re (ft;S(W)2L.?) a t(1a (W) +

P, -OJ
- ,y)2I A 2 , l" o(l/X\). (,.)

'--i (A - o )

.,gii v'J .,w) 6(. -- 0 in this case also. Notic tha! hi.s in (291) and (CVi) f(t 1

f'h sm, )thing .cheme s,-th L = I and the cnr-entional I 1"S( tchemc w-ih K - 2

are functionally identical ,cxcpt for a multiplication factor of two in th c'ovcn- ,n;il

c.a,;e %forccmr. these rcsults s jest that in a corrlatcd two s.oircc ca.c. ibe f I

chcrne %,ill Perform -upcrior to the convcntionai one. This can he cao1% iJu~ir;:tc(! i Ti

an uncorrclarcd sccne where equality of the array ouiipt c-oarancc rnairce,, in iltc

'othC(! and concniionl! cas imples -. $,. 1. . . ,M and ",,.

- ' :) ( ,* t * ,l 7, i )- Wiv ttituting these values in (22) and (25). it eaki

f' , that i = ' -'2 (.:d IY. = C(4 ank corisequient1. thc f'1h z-chcme is uni-

forml, ;tipcrior to the conmcrtional one 1flvlcvcr. in a correlated ccnc. although the

effective correlaton coefficient reduccs in magnitude after 11th'r. it di (11fficiilt to
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exhibit such uniform superior behavior explicitly. Nevertheless, certain clarifications

are possible. To see this, consider two cases, the first one consisting of two correlated

sources with correlation coefficient p0 and the second one consisting of two coherent

sources. In both cases, the sources are of equal power and have the same arrival

angles 0, and 02. The correlated case can be resolved using the conventional MUSIC

scheme, and the coherent scene can be decorrelated and resolved using the f/b

smoothing scheme with L = 1. In the later case from (B.2) and in particular from

(B.9), smoothing results in an effective correlation coefficient pt = exp(j(M -

1)w ,)cos(M - 1)wd with wd = 7r (cosO1 - cos02 )/2, between the sources. In the

event when the temporal correlation p0 in the conventional case is equal to the above

p, then R = A, Ai = Aj; fli = i, i = 1, 2; and from (26), (29) - (31) the f/b scheme is

uniformly superior to the conventional one in terms of bias. This conclusion is also

supported by simulation results presented in Fig. 1 with details as indicated there.

As one would expect, for closely spaced sources the performance of the conven-

tional scheme in an uncorrelated source scene is superior to that of the f/b scheme in

a coherent scene. This is to be expected because for small values of angular separa-

tion (A2 < 1) from (B.28) and (B.29), we have rt(wi) < i(wi), i = 1, 2. The deviation of

77(w i ) and tl(w i ) from zero - their nominal value - suggests the loss in resolution for the

respective estimators. Within a first-order approximation, since the estimators have

zero variance along the two arrival angles in both cases, for a fixed number of samples

a threshold in terms of SNR exists below which the two nulls corresponding to the true

arrival angles are no longer identifiable. This has led to the definition of the resolu-

tion threshold for two closely spaced sources as that value of SNR at which [13]

E[0 Q(w)] = E[ (w2)] = E[ ((w, + w2)/2)], (32)

whenever Var(6(w,1)) = Var(6 (w2)) = 0 . In the case of the two equipowered

Lincorrelated sources equating (B.28) and (B.30), Kaveh et al. found the resolution

threshold to be [13]
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.... coherent case using (29) (f/b scheme with L -1)

0.01 - * coherent case simulation with N = 125

- uncorrelated case using (30) (conventional MUSIC)

+ uncorrelated case simulation with N = 125

- - correlated case (p. = p,) (conventional MUSIC)

• correlated case simulation with N= 125

BIAS

0.005-

0- \

0 I. ... .. ....... .. ............ F .................

0.1 0.2 0.3 0.4

ANGULAR SEPARATION
Fig. 1 Bias at one of the arrival angles vs. angular separation for two equipowered
sources in uncorrelated, correlated and coherent scenes. A ten element array is used
to collect signal in all these cases. Input SNR is taken to be 10dB and number of
simulations in each case is 30.

1/2
1 20( M - 2 + + N A 2  (33)

The corresponding threshold T in the coherent case can be found by equating (B.29)

and (B.31). In that case, after some algebraic manipulations we have

= 1 [20(M - 2) 12 _1 A']([ 1 + 1 + N(M -2) A 211/2

.T - N A4  3A2  20 16 5M(M -4)

2 - 20 16 ]rT( d r" (34)

Though CT and T possess similar features, for small arrays the resolution threshold in

the coherent case can be substantially larger than that in the uncorrelated case. This

asymptotic analysis is also found to be in agreement with the results obtained by
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Monte Carlo simulations. A typical case study is reported in Table 1. When the

equality in (32) is true, the probability of resolution was found to range from 0.33 to

0.5 in both cases there. This in turn implies that the above analysis should give an

approximate threshold in terms of e for the 0.33 to 0.5 probability of resolution region.

Comparisons are carried out in Fig. 2 using (33), (34) and simulation results from

Table 1 for 0.33 to 0.5 probability of resolution. Fig. 3 show a similar comparison for

yet another array length. In all these cases the close agreement between the theory

and simulation results is clearly evident.

The above range (0.33 to 0.5) for the probability of resolution can be explained

by reexamining the arguments used in deriving the resolution thresholds (33) and (34).

In fact, (32) has been justified by observing that within a first-order approximation,

Var(Q(w)) = Var(Q(w2)) = 0. Although Var(Q((wl+w2)/2)) is equally important

in that analysis, it is nevertheless nonzero (see B.32 and B.33). This implies that

though T and T satisfies (32), in an actual set of trials the estimated mean value of

Q((Wl+W2)/2) will almost always be in the interval (0, 2E O((w1+w2)/2))) and

clearly resolution of the two nulls in 6 (w) is possible only if this mean estimate lies in

the upper half of the above interval. In the special case of a symmetrical density func-

tion for the mean value estimate, this occurs with probability 0.5 and the observed

range may be attributed to the skewed nature of the actual probability density func-

tion.

IV. Conclusions

The asymptotic analysis of a set of high resolution estimators for resolving plane

waves that are correlated or coherent with one another is presented here. A

forward/backward spatial smoothing scheme that decorrelates coherent arrivals is

treated first for its mean and variance; similar expressions for the forward-only

smoothing scheme and the unsmoothed conventional MUSIC scheme are derived as

special cases of this general analysis. In particular, the variance of the conventional

MUSIC estimator along the true arrival angles is shown to be zero within a first-order

approximation. This result is independent of the total number of sources present in
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Table 1

Resolution threshold and probability of resolution vs. angular separation for two
equipowered sources in an uncorrelated scene. (number of sensors = 7, number of
snapshots = 100, number of simulations = 100). Probability of Resolution 4 Total
number of successes in 100 simulations/ 100.

angles of arrival angular separation uncorrelated coherent

81 02 2Wd SNR(dB) Prob. SNR(dB) Prob.
19.00 25.00 0.1232 17 0.16 26 0.11

18 0.17 27 0.39
19 0.22 28 0.44
20 0.47 29 0.58
21 0.51
22 0.71

34.00 40.00 0.1978 11 0.26 15 0.27
12 0.39 16 0.35
13 0.60 17 0.61
14 0.65 18 0.76

113.00 118.00 0.2474 6 0.20 9 0.09
7 0.30 10 0.36
8 0.41 11 0.44
9 0.52 12 0.57

- 10 0.74
60.00 66.00 0.2930 4 0.23 5 0.22

5 0.37 6 0.36
6 0.47 7 0.35
7 0.66 8 0.62

127.00 135.00 0.3308 1 0.18 1 0.11
2 0.22 2 0.20
3 0.33 3 0.26
4 0.53 4 0.47
5 0.66 5 0.60

the scene. Further, a resolution threshold, which depends on the relative angular

separation, number of sensors, number of snapshots and signal-to-noise ratios, for two

coherent, equipowered, closely spaced signals is derived from the bias and variance

expressions of the f/b smoothing scheme. This large sample based asymptotic result is

compared to the one obtained by Kaveh et aL [13] for two uncorrelated, equipowered,

closely spaced signals. From these comparisons, to detect the arrival angles for two

closely spaced, equipowered, coherent signals, under identical conditions approxi-

mately [(I/Mwd)2 - 1] times additional snapshots than those in an uncorrelated situa-

tion are required. These results are also seen to closely agree with those obtained

from Monte Carlo simulations.
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...... coherent case using (34)

30-* coherent case simulation with N =100

- uncorrelated case using (33)

+ uncorrelated case simulation with N= 100

20.
THRESHOLD

SNR (dB) .4

10-

0
0.1 0.2 0.3

ANGULAR SEPARATION

Fig. 2 Resolution threshold vs angular separation for two equipowered sources in
coherent and uncorrelated scenes. A seven element array is used to receive signals in
both cases.

.......... coherent case using (34)

3* coherent case simulation with N= 100

uncorrelated case using (33)

". uncorrelated case simulation with N= 100

20
THRESHOLD

SNR (dB)

10-

0-
0.05 0.1 0.15

ANGULAR SEPARATION

Fig. 3 Resolution threshold vs. angular separation for two equipowered sources in
coherent and uncorrelated scenes. A fifteen element array is used to receive signals in
both cases.
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Appendix A

Asymptotic Distribution of the Sample Eigenvalues and Eigenvectors Correspond-

ing to Distinct Eigenvalues of A

With symbols as defined in the text, S representing the ML estimate of the

forward/backward (f/b) smoothed covariance matrix I, we have

1 L ri N+ Rt (A. 1)

S = N, f x(n) (xf(n ))' + '(n) (n) j (A.2)

where

S=diag 1Sl,  ""' ,SK' a2, .. .,2] L= diag [F11,21.. I' ,K, rK +,1, " IM
fi 'fE t' 1,E

and 1R, E satisfies fii, ei _0, i - 1, ,2, " , M for uniqueness. As is well known, the

eigenvectors are not unique, and let C represent yet another set of eigenvectors for ,

i.e.,

S=CLCt (A.3)
where

C = [c 1, c 2, "'. M I ] CC l = IM  (A.4)

For reasons that will become apparent later, C is made unique here by requiring that

all diagonal elements of Y given by

Y = AtC (A.5)

are positive (yii 0, i = 1, 2, - -', M). In what follows we first derive the asymptotic

distribution of the set of sample eigenvectors and eigenvalues of S given by (A.3) -

(A.5) and use this to analyze the performance of the sample directions of arrival esti-

mator O(w) in (21). This is made possible by noticing that although the estimated
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eigenvectors e, e2, "", 6 in (21) are structually similar to their counterparts

1, 2 ", AK, and in particular have eii _0, nevertheless they are also related to

ci , i = 1, 2, ,K, through a phase factor (4); i.e.,

6i -" e j $ c'i, i =1, 2," K (A.6)

and hence

K t 2 K K0(W) =  I- Ei [aw) I 1- a(W)[ 2  1- yj y(w) (A-7)

ifil i-1 i=1

yi(w) = Icia(W) 12. (A.8)

Thus, the statistical properties of 6 (w) can be completely specified by those of

ci , i =1, 2, , K, and towards this purpose, let

F = v (L- 1) (A-9)

G gl 2,"" gc,"" g ] =  (C -l)(A,10)

and

T = Bt SB = BtCLCtfi = Y[Yt (Ail)

where Y is as defined in (A.5) withyj 0, i = 1, 2, "", M. Further, let

U v- (T- i)

N _L L3 (4z(n ) (zf'(n )t+ z'(n ) (z '(n ))- ] (A. 12)-- E 2L E =I I

with

zf(n) = itxf(n)- N (0,AtR/Bi); z4(n)= 3xtb(n)- N (0, 3tR b Bi).(A.13)

It is easily verified that these random vectors preserve the circular Gaussian property

of the data vectors. Again, from the independence of observations, asymptotically

every entry in U is a sum of a large number of independent random variables. Using

(4) From (A.2) and (A.3) we havej.V = VL where V = E t C. Thus, for any nonrcpcating

eigenvalue 1, it follows that i, = e ci . Interestingly, since the eigenvalues of the estimated
covariance matrix are always distinct with probability one [181, (A.6) is true for 1<i <Al'.
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the multivariate central limit theorem [16], the limiting distribution of U tends to be

normal with means and covariances given by

E [u.. ] = 1 N _ 1 (n) °(n) * +z(n) zb(n)) Ai6iy =0(A.14),IN Eti 2L -- (nzi (n) zn z,1

(Here onwards whenever there is no confusion, we will suppress the time index n)

since [1 L [, f ] ~ (f) ~

fl itE [ S] "-i fi R#J. = Ai bij (A. 15)

and

E[ju fE [ f f  f  f  +j E
[N ,uE Zu ] 's [422 + E [zi Pz/ Zqk ZqI]

un=l P. q=1

+ E [_bzb._,._, Ez.zb.zb.z ] -j~6
[pi Zpj Zqk ql ] + E zpi zpj Zqkql ii k

Using the results (5) for fourth-order moments of jointly circular Gaussian random

variables and after some algebraic manipulations, we have

1 L L b-t b  b

pq f1 #I % l l =1ik# #

A p, 11 -j Rp.q fik + AiRpq * '1)p.7

IIHere by definition po = Mo, -M -p + 2, q, = Mo -M -q + 2 and jtj is the inverted/

vector with iJm = N'M-m +1r For L = 1, in an uncorrelated as well as a two equi-

powered coherent source scene, it is easy to show that f 1 Jj = j Rj, for all i,

Using standard results regarding the equivalence of eigenvector sets of a hermitian

(5) Let z 1, z2, z 3, z be jointly circular Gaussian random variables with zero mean. Thcn [151

E [ZZZsZ41 - E[zz" IE[z4z; I + E[zlz3 JE[z4zl 1.
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matrix (see footnote (4)), it then follows that 0i = Aj ej 04, i = 1, Z , K and

[iK+l,. ",tm] = [K+1 ., ,M M]V, where V is an (M-K)x(M-K) unitary

matrix. Further,
R1q AE [xfxf t] . q b b b

q [x(xf)l ; Rq ; -E[xp(xq)] (A.17)

In obtaining (A.16), we have also made use of (A.15) and the fact that for circular

Gaussian data,
fb* "_t: f bt]

E [ zfjzb. I = fitiE[xf xbtlI.j = flt E [xf(xf)T]*O 0 p, q =1 --,L

The forward-only smoothing scheme now follows as a subclass of this general

analysis. In that case the estimate of the smoothed covariance matrix is given by

f 1L _1 N f(,)(xf (n))t : .

1=1 I nI

Then, as in (A.14) with f(n) = fit f(n) where E [S] =R f = Bf Af Bt
'ai fal Nff

At Afi i , we have
i fi

j=1

U1 = 7 n= l I 1zj P j

Thus, E [uij] = and
= 1 L=E[uijuk] = L Li% R;q iPk t Rfj ik4tr (A.18)

p=l q=1

where we have again made use of the circular Gaussian property of the data vectors.

Two important special cases of considerable practical interest are the conven-

tional (unsmoothed) MUSIC scheme and the f/b smoothed scheme with L = 1. Of

these, the former one corresponds to the forward-only scheme with L = 1, and in that

case from (A. 18),

-i, PtRP O PRfl = XAXJ&IkbJ (A.19)
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In the latter case, using (A.17) together with the identity A a(wk) = 0 for

i = K+1,K+2," •, M andk - 1,2,..., K simplifies(A.16) into

1- t t -
rikij '\ 2 iJbikbjlAi i;P

in an uncorrelated scene. Similarly, in a two equipowered coherent source scene, we

also have

1 t Rtb tb - -t
- -t f-.t b- 1 t b..tR/1,

riktj ='--' - j1jji R 1 fk -Pi n~hjtjPk] i,j,k,l <2 (A.20)

aifj( k'j, + tI1I -k ), otherwise.

Further, using (A.11) together with (A.12) and (A.9) we have

k + -U = YLYt = Y(I + 1-F)Yt

which gives the useful identity

1 + _-U = Y(1/ + "i- F)Yt .  (A.21)

To derive the asymptotic properties of the sample estimates corresponding to the dis-

tinct eigenvalues A1, A2 ,... K of , following [16, 19] we partition the matrices A, U,

F and Y as follows

A 0 U11  U12

O0 21M -K U21 U22

[F 1011 Y121
F Y= (A.22)

0 F2 Y21 Y22
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Here 41 , U11, F1 and Y,1 are of sizes KxK, etc. With (A.22) in (A.21) and after some

algebraic manipulations and retaining only those terms of order less than or equal to

1/vfN ", we have

[A 0 + 1 1 U 12  A, 0

2 + FrN +
.0 aMK [U21 U22][ 0 O2Y22Yt2

i1W 1  1 21r1 22

1 " 72Y22W12 Z O Y2 2] z: ef1 Y]

+ o(L (A23)

where

Wi1 - (Y1 - IK) (A.24)

W '12 = V N 12 'W21 = VN Y21

and define the column vectors w1, w2, • , wK from

[W l

wW1 .. wI" ,WK 4 W.

Similarly,

f 0]yyt= IM = K +

W~~ gW Y
[ 1 W12Y22 

+ I W21] +01N / o() (A.25)
tW21 O V22W12 0O

Thus, asymptotically for sufficiently large N, from (A.25) and (A.23) we have

O=W 1 +Wt 1 (A.26)
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W + ¥,0% = 0

U11 = Wn i + F1 + i (A.27)

and

U21 - W21 1 + 2 YW 2 - 1 1 - a2W21. (A.28)

Since yi > 0, this together with (A.24) and (A.26) implies

w=0 , i =1, 2, ',K

and

= , j j1, 2, - -K , i-j

which when substituted into (A.27) - (A.28) gives

fii = Ui' i -- 1, 2,.., K (A.29)

uij/( -ii ) ij = 1,2,"',K , i #:j

(A.30)

u ij/(_ a 2)-  i =K+I,K+2,'",M , j = 1,2,"- ,K.

From (A. 10) and (A.5) we also have

r I11'K 1
G =/V (C-1B) =V"N'B(Y-I) =v/V ' -  I

Y21 Y22-1M-K

which gives

[g1, g2,"" 1,K]I = Bwi IwtW2,'"" t'WK I"

This together with (A.9) and (A.29) gives

-I = A. + (1/vfN)fii =A. + (I/v-)u.i ; i = 1,2, , K (A.31)

and
M -

Ci = Pi + (1/vrN')Bfiwi =  i + (1l//N) M Wji j ,i = 1, 2,""- ,K. (A.32)

j=1
j,*i

Thus, the estimators I, and ci , i = 1, 2, - •, K, corresponding to the distinct eigen-

values of !k, are asymptotically multivariate Gaussian random variables/vectors with
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mean values A5 and ji , i = 1, 2'"', K, respectively. Further,

CoV(fI . i) I -iE[u,ujj I I - jj, , i,j = 1 2 " ,K (A.33)

and

1 M M r id' 6
co,, ,, ci V = k E E . (A-34)

k-i l'! (Ai -- k)(A. -A 1 )

k.0i I pj

Notice that ci in (A-32) are not normalized vectors, and it may be emphasized that in

the case of eigenvectors, the above asymptotic joint Gaussian property only holds good

for these specific sets of unnormalized sample estimators. However, from (A.4) since

the eigenvectors ci , i = 1, 2... , K, appearing in (A.7) are normalized ones, to make

use of the explicit forms given by (A.32) there, we proceed to normalize these vectors.

Starting from (A.32), we have

ci 2cc- + - Iwji >1

and, hence, the corresponding normalized eigenvectors ei , i = 1, 2, K have the

form

8i = 11Ci II c i 1 1- 2N E [Il W i + - ' jJ'ij

j=l =

j*i j.#i

1 MM 22.
- wk I w1i # + o(11N)

k=1 1=1
k/*i 1,/i

Using (A.30) and (A.16) this gives
E "1 M 

2ii)[i el. i - 2N )-2 A + o(1/N) ; i = 1,2, ,K (A.35)

J=: (A. -A )a j;

since from the asymptotic joint normal distribution of these zero-mean random vari-

ables uij (i ykj), their odd-order moments are zero. Thus, asymptotically these nor-

malized estimates for the eigenvectors fi, . . ., k3 , of k are unbiased and the

exact bias expressions are given by (A.35). Further,



1~

+M

e, -I W- + IW I,
k-1 k-1i I
k ps k p,

2v w, + kW J + ,' w J0 W1
2

I k I k-I 1-1
kpi kpj k 1p 0 Ip j

1 M 1 2 - t 1 M 2~-

N , i w E 1W2, I+ Wfi f i + E 2 IWkjIWj +A (1/2
kNl I I I k- 1-1
k pi Ipi kp*j IPj

+ ~ ~ 2 + oWW i~i+ ~ W~jj~i (1/A' 2) (A.36)
k-i 1-1 k-i 1-1
k P I ,j ki 1I6j

Again, neglecting terms of order 1/N 2 and proceeding as above, this expression

reduces to

At _t M iikk M lvjjkk it

k-i (Ai -- )2  k-i (j -- I 'k)[ Apik kj I k JLk;i k;1j

1 M M _ kji
+ N E E &A-t + o (I/N2)  (A.37)

k-l i=1 (R --A( -l
kf'i 1ijj

An easy verification shows that Cov (ei , ej) is once again given by (A.34), but

nevertheless, (A.36) - (A.37) will turn out to be useful in computing the asymptotic

bias and variance of the sample direction estimator 6 (w) in (21).

These general expressions in (A.35) - (A.37) for first- and second-order moments

of normalized eigenvector estimators can be used to evaluate their counterparts for

the forward-only and the conventional cases by substituting the proper F values

derived in (A.18) and (A.19), respectively. Thus, for the conventional MUSIC case
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using (A. 19), we have

1 M Xi_ j
E[ti i - "- 61i -+ o (1/N 2)

j-1 (AXi -A \j) 2

E Mi '\i )A"k M j Ak
k ( - k) 2  k= j 2

1 M ,Ai i( Ak)

t 6i + 0(11N )

+ k--1 (A. _Ak)
kf*i

where Aj,,f, ; i = 1, 2, ,M are as defined in (8). These results coincide with

those in [13] (see Appendix A).

Once again for the f/b smoothed case using (A.7) - (A.8) and recalling that the

eigenvector estimator appearing there are normalized ones, we have

At 2 A t
yi(w) = Ic a(w) 2 = a (w)ie a(w) (A.38)

and from (A.37) and (21) we have

A 1 K - i fia(W)12

i1 k-I (A, - Ak)

- - - at() kp a(w) +o (I/N2)- Q(w) as N--oo. (A.39)
k=1 1;1 (A-A\k)(A,-AI)
k*pi I i(

Also,
2

Var(Q (w)) =E[Q(w)] - (E (w)E)[ = E E ( [y(yj - E [y, ]E[y j .(A.49)

Using (A.38) and (A.36), after a series of manipulations, we have
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E[yj y] - E[y]E[y] -L E [di(w)dj(w)I] + o ([N 2

where

di (wo) = E (w i at(w)pk,5,a(w) + w.a(w)fAa(wj))
k=1
k tki

which gives
E[yiYj] -E[yjE[yj] =

Re (fklji at(w)Aj: a(w) + kjti at(w)AAj a(w)) at(W)Ak Aita()]2M M L 2i2
Y-E E +O( 2).

k-I 1=1 (, k)A-A)N
k~i 1l*j

(A-41)

Finally, with (A.41) in (A.40) we get

Var (u)) =

2 A Re[ (fL1jiat(w) 101a(J) + fkjliat(w)Afj ta(w)) at(Wt)k ?a(W)]

k ki tj

+ o (l/N 2) 0 as N --+ oo. (A.42)

Thus Q (w) is a consistent estimator in all cases.

Appendix B

In this appendix, expressions for eigenvalues and eigenvectors of the smoothed

covariance matrix ft with L = 1 for two coherent signals are derived. In addition,

several associated inner products that are needed in section 2.2.3.B for resolution per-

formance evaluation are also developed [20].

Consider two coherent sources cru (t) and a2u (t) with arrival angles 0,, 02 and

source covariance matrix
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IC- alra a ' ,ax a, = I aI ej' , E[ Iu() 12]=1

c, I I a2 1 2] a2]'

When the forward/backward smoothing scheme is deployed once to decorrelate the

coherent signals, from (15) the resulting source covariance matrix Au has the form

A 1 ±[Cla + o[ 1 12 l 2[a2.y] =[4 (B.1)

where

T j M-O,(M -1 2=[v]r vi = e V2 = e

and the effective correlation coefficient p, is given by

pt = (I+ ei-j 2 1 L,;)/2 (B.2)

Using (B. 1), the noiseless part of the smoothed covariance matrix A can be written as

t A ,A t  -L Ibt + b2 b2 ]  (B.3)

where

b, = '/KK (xa(wl) + a.a(w2)) ; b, - v§(tala(w1 ) + t, 2a(w 2 )). (B.4)

The nonzero eigenvalues of R are given by the roots of the quadratic equation

2- tr(ARtu At)A + I!, AtA =0
which gives

'= 2tr ( AK-u A' ) 1 -1 -2 1 i = 1, 2. (B.5)

To evaluate 4i1, , explicitly, we define the spatial correlation coefficient p, between

the sources to he

j (M - )~sin Af wd A (t - l)wd
PS = a( 1)T a(w,) = c - l  i Si(Mwd) (B.6)

Af sinwd
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with d = (w,1 - w, )/2. From (B.3) - (B.4) we have

tr(AkAt ) = M(Ia 1 2 + Ia212 + Re(qa2p, + alqVj V2pS)) (B.7)

and

I ,,AtAI = IsI IAtAI-M 2 la 2 1a21 2(1 p1 1)(1- Ips 12). (B.8)

Here onwards we consider the two sources to be perfectly coherent and of equal
2power; i.e., a, = a2 and a ,t I = 1. In that case we have

1 + 1l/; j(M- x)w(

pt- 2 -e COS (M - 1) Wd  (B.9)

Re(p,) = cos[(M - 1)d ]Si(Mwd) = Re(pspt) (B.10)

and with (B.7) - (B.8) in (B.5) it is easy to see that

gi =M[1+Re(psp*)± Ips +p, I] ; i = 1,2, (B.11)
.21

where we have made use of the identity [Re(pp*)] 2  Ps 1 2 P, 12. The eigenvec-

tors corresponding to these eigenvalues span the two-dimensional signal subspace, and

from (B.3) they are linear combinations of b1 and b2; i.e.,

j9 oc (b, + ki b2) , i = 1, 2. (B.12)

Moreover, Ai, /j, i = 1, 2, as a pair satisfy

(Al At) 3i = if i , i = 1,2,

which together with (B.3) results in

+ + bt+ bb2]b 2 =ikib2 i = 1,2. (B.13)
12 ~l ib~21  2 2- 1 2 ki 2 21

The solution to (B.13) need not be unique. However since the eigenvectors can be

made unique by proper normalization, at this stage we seek a solution set to the dis-

tinct equations

1~~ ~ ( t t tb+k btb2 A. fk. i =1,2. (B. 14)2[1 bb 1 kbb21 A ;i, 2- b2b + 2, 2 , = •
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Clearly, solutions to (B.14), if they exist, satisfy (B.13). To simplify k, ; i = 1, 2

further, using (B.4) and (B. 10), notice that

1bbI = 2M ( 1 + Re(pspt*))

bb= 2,a aMv(p + p*) = 2a1 Mv 2(ps + pt

and these together with (B.11) in (B.14) yield

Ias+PtI IPs+PtI

ki  = + t + (B.15)
V, vlPS + Pt') cl V2( Ps + Pt)

Using (B.15), the eigenvectors in (B.12) can be written as

Pj oc(b, + kib 2) = (a1 
+ a,vki )a(wl) + (a+ "v 2ki )a(w 2 )

r I i ' + Pt I r IPS + pt IOC 1 _ a(w~) + I _ a(wz). (B. 16)
ps+ Ps + Pt

To simplify this further observe that

ps + pt = eJ(M-I J[COS(M - 1)wd + Si(Mwd)]

and consider the case when [cos (M - 1) Wd + Si (Mwd)] > 0. Then from (B. 16)

±i e eJ(M -1),/2e -i(M-1)w/2 + e-(M -1 /22]a(w)

M- I21 e -j(M -1w1 e -jM-M2]a(w2) oc U11 ±- U2

where

j (M - 1),2 j (M - 1) a2/2
U1 

= e a(w,) , u2 = e a(W2).

Finally, the normalized eigenvectors corresponding to the nonzero eigenvalues in

(B.11) are given by
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(U - U 2)/N 2 (1 Si(Mwd)) [cos(M - 1)wd + Si(Mwd) > 0
S (uu 2)//2(1 Si(Mwd)) otherise

i = 1,2.

Notice that the uncorrelated source scene is a special case of (B.1) with al = = 1,

and p, = 0. Thus from (B.11) in that case

and similarly

(u _ u 2)/V(2(l ± Si(Mwd)) Si(Mwd) > 0

S(U l T U2)/ 2( 1 T Si(Mwd)) otherwise (B.19)

i = 1,2.
From (B.17) and (B.19) we can conclude that for equipowered sources, irrespective of

their effective correlation p, resulting from spatial smoothing, the smoothed and the

uncorrelated cases have the same set of eigenvectors whenever [ cos (M - 1) Wd +

Si (Mwd )] and Si (Mwd) have the same sign; i.e.,

j = fl3 ,i = 1,2 [cos(M - 1)wd + Si(Mwd)] > 0 and Si(Mwd) > 0

71 = P2 2= otherwise

We conclude this appendix with several useful parametric approximations to

eigenvalues and inner products between eigenvectors and direction vectors for both

uncorrelated and coherent cases. To start with, let [13]

A2 A (M2WV2) /3

For closely spaced sources (M wd)2 < < 1, and in that case from (B.9) and (B.6)

pt =  1 - 3 ( M-1) 22 + -- ) 4A4 + ]
and
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1 sinMwd 1 2 3 4

Si(Mwd) = M i [-  Y A + -oA I
simwd

Ps = eJ(M -1)W 1 - 2 A + -A I. (B.20)

For the uncorrelated case parametric expressions for the eigenvalues can be easily

obtained from (B.18) and (B.20). In a similar manner for the coherent case, using

(B.11) we get

4 ~ M -(1i- 3-),& + ('-- 9M)A 4  (B.21)

2 4
2 = M (1 - )A4 .  (B.22)

Because of the equivalence of eigenvectors for two uncorrelated and perfectly

coherent equipowered sources, we have (for Si (Mwd) > 0)

Ifia(w)12 = ITa(w)l , forallw, i = 1,2 (B.23)

and it suffices to obtain the inner products of the eigenvectors in (B. 19) with direction

vectors associated with the true arrival angles. A little algebra shows that

ot 2 = 1 + S'Wd) A 12 3L 4 (.4
lI1a(wl)2I = =la(W2)S 2 4 1 - -A + A (B.24)

t() 2 1 0 t2 [2 1-Si(MWd) 12 3

21 = = 2 4 A 8- A . (B.25)

Similarly, for the midarrival angle w. = (w1 + w2)/ 2 we also have

2
t =2 2(Si(MWd/2))2[ l~w )[= tla(w.m )12 = 1 - - A  (B.26)

1 + Si(Mwd) 80

and
t 12 t2

fl, a(w,) = 82pa(w,)I 2 =0. (B.27)

Finally, with = =PM/o 2 = M/a , and using (B.21) - (B.27) in (29) - (30), for bias

we have
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S= M-2[+A ] (B.28)

-2-( -4 M-2 ]
M - 2 1[ MA- + 1+ 2tj 2MA- MA2 I(B.29)Niw~ [46(M - 2) 10J e2 9(M -4) 3(M.4 LI

for i = 1, 2, and for the midarrival angle wm, this is given as

E[O(wm)] =a + #[b + c] (B.30)

in an uncorrelated source scene and

E[O(Wm)] = d + -L b[ + c] (B.31)

in a coherent scene. Here
a =d =Q(wm ) ZA 4/80,

b M 2(1 +6A2/4)] c = 2 (1 + A2/2)]

4 1- A2 and2 16[ 2M A 45(M-4)

As a consequence of the above analysis, we also have

a2( Wm) =d 1 e +1f (B.32)

and

2 d [. 1 +I f] (B.33)02bj )=N 4 16e2

where

d A 4 I A-4- -

e =I+A2/4+A 4/40 , f =+A 2/2+9A4/80

e 1 + (1 - 3/2M)A 2 + (47/80- 15/8M + 9/4M2)A 4
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f 1+ (2 - 3/M)A 2 + (87/40- 27/4M + 27/4M2 ) A4
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2.3 GEESE (GEneralized Eigenvalues utilizing Signal subspace

Eigenvectors ) - New Performance Results on Direction Finding

2.3.1 Introduction

In recent times, multiple signal identification using multiple sensor elements has

been a topic of considerable research interest in array signal processing. A variety of

high resolution techniques that evaluate the directions-of-arrival of incoming planar

wavefronts by exploiting certain eigenstructure properties associated with the sensor

array output covariance matrix have been developed in this context [11- [11]. Of

these, the relatively new scheme called ESPRIT (Estimation of Signal Parameters via

Rotational Invariance Techniques) [9] - [10] departs from its predecessors on several

important accounts. It utilizes an underlying rotational invariance among signal sub-

spaces induced by subsets of an array of sensors. To accomplish this, in the original

ESPRIT scheme[9], the interelement covariances among the given sensors are used to

construct the auto- and cross-covariance matrices first and the common noise variance

is then evaluated by an eigendecomposition of the auto-covariance matrix. After sub-

tracting the noise variance from the proper elements of the auto- and cross-covariance

matrices, the generalized eigenvalues of a matrix pencil formed from the subtracted

matrices are computed and they in turn are shown to uniquely determine the unknown

directions-of-arrival [9] - [10]. Compared to the Multiple Signal Classification

(MUSIC) technique [2], the ESPRIT scheme is known to reduce the computation and

storage costs dramatically. In addition, this method is also shown to be more robust

with regard to array imperfections than most of the earlier ones.

Notwithstanding these merits, when estimates of the inter-element covariances

are used in these computations, subtracting the estimated noise variance from the

auto- and cross-covariance matrices can at times be critical and may result in overall
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inferior results. To circumvent this difficulty, the TLS-ESPRIT (Total Least Squares

ESPRIT) scheme makes use of certain overlapping subarray output- and their cross-

covariance matrices simultaneously [11]. Though TLS-ESPRIT is superior in its per-

formance compared to ESPRIT, it is computationally much more complex. However,

computational simplicity can be maintained without sacrificing superior performance

by exploiting the underlying rotational invariance among signal subspace in an

efficient manner. In that respect, the GEESE (GEneralized Eigenvalues utilizing Sig-

nal Subspace Eigenvectors) technique - that is studied here seems to be promising.

Unfortunately, unlike the MUSIC scheme [12], no statistical performance analysis

results are presently available for the ESPRIT or the TLS-ESPRIT scheme reported

in [9] - [101 to evaluate their imperfections.

In what follows, we first derive this proposed scheme for estimating the

directions-of-arrival of multiple sources. This is carried out by observing a well-known

property of the signal subspace; i.e., the subspace spanned by the true direction vec-

tors is identically the same as the one spanned by the eigenvectors corresponding to

all, except the smallest set of repeating eigenvalue of the array output covariance

matrix. This elementary observation forms the basis for the algorithm described in

section 2.3.2. Using results derived in appendix A [16], section 2.3.3 presents a first-

order perturbation analysis for the case where the covariances are estimated from the

data and evaluates the mean and variance of the directions-of-arrival estimators for a

single-source scene and a two-source scene. These results are in turn used in deriving

resolution thresholds associated with two closely-spaced equipowered sources.

In an uncorrelated and identical sensor noise situation, when exact covariances

are available, all these techniques can be applied to a uniformly placed array or a pair-

wise matched arbitrary array with codirectional sensor doublets. Since functionally

these two arrays generate the same structured data with respect to the methods under

discussion in the exact case, we will assume a uniform array to describe the algorithm.
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2.3.2 Problem Formulation

Let an uniform array consisting of M sensors receive signals from K narrowband

sources u u0) U 2(t), "", UK(t), which are at most partially correlated. Further,

the respective arrival angles are assumed to be 01, 02, • " , OK with respect to the

line of the array. Using complex signal representation, the received signal xi (t) at

the i th sensor can be expressed as

K -? (i-1) cosk+Xi'(t )  E Uk (t )e + ni(t ) . ()

k=1

Here the interelement distance is taken to be half the wavelength common to all sig-
th

nals and ni (t) represents the additive noise at the i sensor. It is assumed that the

signals and noises are stationary, zero-mean circular Gaussian independent random

processes, and further the noises are assumed to be independent and identical
2

between themselves with common variance a . Rewriting (1) in common vector nota-

tion and with wk = 7r cos Ok ; k = 1, 2, ,K, we have

Kx(t) = F Uk(t)a(wk) + n(t), (2)

k=l

where x( t ) is the MX vector
T

x(t) = [Xl)X2(t), 'XM(t)] (3)

and a(wk) is the normalized direction vector associated with the arrival angle 0k ; i.e.,

1-[ 1 -2 -(A - 1)]T
a (wk) vk Iz ,Ak ,'', k  ,(4)

with

Se Wk(5)
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(1)
The array output vector x( t) can further be rewritten as

x(t) = Au(t) + n(t), (6)

where

Tu(t) =[u 1 (t),u 2(t), (7)t)]U~)= I M U2(1... I K I(7)

T
n(t) = [nh(t),n2 (t), nm(t (8)

and

A = VAT [a(w), a(w,),'', a(wK)]" (9)

Here A is an M xK matrix with Vandermonde-structured columns (M >K) of rank K.

From our assumptions it follows that the array output covariance matrix has the form

R -E [x(t)xt(t)] = AR, At + C2I (10)

where

RU 4 =E [u(t) ut(t)](1

represents the source covariance matrix which remains as nonsingular so long as the

sources are at most partially correlated. In that case AR At is also of rank K and

hence, if A_>A2_> ... _>AM and 01,.rz, .. ', fM represent the eigenvalues and the

corresponding eigenvectors of R respectively, i.e.,

M (
R= A (12)

1=1

2

then the above rank property implies that AK+l = AK+ 2 = AM = a. As a

result fori =K+I,K+2, "-,M

R/J, = (ARUAt + a =21),Oi =r2,oi

(1) Here onwards T, ( )T stand for the transpose and the complex conjugate
(ransposc of , respectively.
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or equivalently,

ARuAtfi -'0. (13)

For full column rank A matrix and nonsingular R., (13) implies Atfi = 0, or

fita(wk) = 0 , i =K+I, "",M , k =1,2, "",K. (14)

Schmidt [2] has used this well-known property in defining the estimator

1
P(w) - (15)

Q(W)

where

M 2
Q(w)= E [Ifta(w)I2 (16)

i=K+I

Notice that Q(w) = 0 iff wE {wl, w2, ... , wK} and consequently the peaks of (15)

correspond to the true directions of arrival.

A completely different point of view can be developed using (14). Since the K

true direction vectors a(w,), a(w2), . , a(wK) are linearly independent, they span a K

dimensional proper subspace called the signal subspace. Further, from (14), this sub-

space is orthogonal to the subspace spanned by the eigenvectors O3K + 1, fK +29 '",

fJ t, implying that the signal subspace spanned by a(wj), a(w2), .. , a(w,) coincides

with that spanned by the eigenvectors ,, 62, "'", OK. Using this crucial observation,

the eigenvectors #I3 , P2, "", PK in the signal subspace can be expressed as a linear

combination of the true direction vectors (columns of A); i.e.,

K

,01 = E cka(wk) , 1=1,2, ",K. (17)
k =I

Define the M xK signal subspace eigenvector matrix as

B [f 2' "''OlK" (18)
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Using (17)

B KK KAt(9B= E ckla(wk), E ekza(wk), '  I(W =AC (19)
k-l k-i k-l

where A is as defined in (9) and C is a KxK nonsingular matrix whose (ij) th element

is c'ij/vTM. Further, define two matrices B1 and B2 using the first L rows and the 2 d

to (L + 1) h rows of B respectively where K < L < M - 1; i.e.,

B1 = [IL I OL,M-L]B (20)

and

B2 = [OL, 1 IL I OL,ML-I]B. (21)

Then, we have the following interesting result (2)

Theorem: Let -ti represent the generalized singular values associated with the

matrirpencil { B1 , B2 }. Then

-y, =  uk k =1, 29,'",K. (22)

Proof: From (20) and (21),

B1 =Alt , B2 =A 2 t (23)

where

1 1 1
-I -1 -Al P2 "" Ku

A, = • (24)

u -I 1 ) -- ( L - A ( L 1 )

(2) Here IK represents the KxK identify matrix and OJ represents the Kx/ matrix with all
zero entries.
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and

-1I- -1

Al /L2  A

-2 -2 -2

A2  =AD (25)

-L -L -L

.A1 ~2 A

with

D ig l ",---,K (26)

Notice that A1, A2 are matrices of size L xK and D is of size KxK. To obtain the gen-

eralized singular values for the matrix pencil { B1 , B2 }, using the above representation

we have

B1 - -1B2 = A,1e - yA1 D = A(IK - -yD)C (27)

Since the K columns of B in (19) are independent, B is of rank K (M > K). More-

over, from the definitions of the rectangular matrices B1, B2 in (20), (21), these

matrices are also of rank K (full column rank) and using (23), rank (A1) = rank (t) =

K since L > K. Thus, from (27), the singular values of the above matrix pencil

{ BI , B2 } are given by the roots of

IlK -- ID I =0. (28)

These generalized singular values correspond to the complex conjugates of the diago-

nal elements of D; i.e.,

-yk =  k  k = 1,2,.,K. (29)

Notice that L can be any integer between K and M - 1.

Q.E.D
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So far we have proceeded under the assumption that the ensemble average of the

array output covariance matrix is available. It may be remarked that the underlying

rotational invariance idea that has been exploited here, is basic to the ESPRIT scheme

and in that sense they are equivalent when covariances are exactly known. Usually,

these exact averages are unknown and in practice, the estimates obtained from the

array output data are used. In that case these methods give rise to different algo-

rithms, and in actual practice, these algorithms will perform differently. Often the

maximum likelihood (ML) procedure is employed in computing these covariance esti-

mates. For zero-mean M-variate circular Gaussian data x(t, ), n = 1, 2, • • •, N in

(6), with unknown MxM covariance matrix R, the ML estimate S of the covariance

matrix is given by [15]

N = x(tn )x( t ). (30)
n=1

The eigendecomposition of S given by

S =ELEt , EE t = I (31)

where

E =[e1, e2, '  e, eM ]; L = diag I'l 2, ' ' . , lM .

is usually used to obtain the LxK matrices E1, E2 by replacing B by E in (20) and (21).

The estimates i, i = 1, 2,•, K of the true angular parameters Ji, i = 1, 2,•, K

are then given by the generalized eigenvalues of the matrix pencil {E1, E2}. Simula-

tion results using this procedure is presented in Fig.1 for a three-source scene with

details as indicated there.

In what follows, we establish several performance results of the algorithm

presented here using the statistical properties of the estimated covariance matrix S

derived in [16, 171. These results are in turn used in analyzing the performance of the

estimated generalized eigenvalues in a single-source and a two-source scene.
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2.3.3 Performance Analysis

In this section, we examine the statistical behavior of the estimated generalized

eigenvalues in a single-source case and a two-source case for the least favorable

configuration L = K as well as the most favorable configuration L = M - 1. These

results are subsequently used in deriving associated threshold expressions for resolving

two closely-spaced sources. For L = K, it is shown here that the bias of the estimated

generalized eigenvalues is zero and the variance is nonzero within a 1/N approxima-

tion. This behavior is unlike the MUSIC scheme where within a 1/N approximation,

the bias is nonzero and the variance is zero [12, 16]. For L > K, the situation is con-

siderably more complicated. In particular, it is also shown here that for L = M - 1 the

estimated generalized eigenvalues are no longer unbiased in a two-source scene. For

sake of completeness, the exact bias expressions together with their variances are also

given. We begin by considering the L = K case.

Case 1 : The Least Favorable Configuration (L = K)

A. Single-Source Scene

In Appendix A, the mean and variance of the estimated generalized eigenvalue "

for a single-source scene are shown to be

1 (32E [ -y1 7 + o( - (32)

and

2MA1 2 o 1)

Var (l) = 2 + (- NAa. (33)
N (A -2)2

Here, o (1/Nv'2V) represents the terms of order less than 1/N. From these results,

"Y, is unbiased within a first-order approximation.

With A = M P + a2 for the signal subspace eigenvalue where P represents the

signal power, (33) simplifies into
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Vat ( 1) -+=+ 
(34)N e ( -

where = M P/2 represents the array output signal-to-noise ratio.

B. Two-Source Scene

With the help of (A.1), the mean and variance of the estimated generalized

eigenvalues ^ , i = 1, 2 in two equipowered uncorrelated source scene are shown to be

(see Appendix B)

E[A =i + o( -) 1 i = 1,2, (35)

and

ar M(2 + Re(,'p) + IPS ) A 2  + - IS )
2N(1 - Re(Iit? lp.)) a ') (,A2 -ao2)

o( ) i = 1,2 (36)

where

p, = at(w,)a(w2) = e( d sinMwd = (w -w 2 )2. (37)

Thus, for L = K, within a 1/N approximation, ^i, i = 1, 2 are once again unbiased

estimates with finite variance. Simulation results presented in Fig.2 are seen to be in

agreement with these conclusions. The random pattern for actual bias in Fig.2 may be

attributed to computational and other round-off errors and indicates the absence of

1/N term there.

To simplify (36) further, for two equipowered uncorrelated sources, the signal

subspace eigenvalues are given by [12]
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Ai =MP(I PI)+a , i = 1,2. (38)

With (38) in (36), finally it simplifies into

M (2 + cos 2wd 1 1
V(2 s Os.. 2 1 N+ j (NVN )i =1,2. (39)

These expressions can be used to determine the resolution threshold associated

with two closely spaced sources. For a specific input SNR, the resolution threshold

represents the minimum amount of angular separation required to identify the sources

as separate entities unambiguously. From (35) and (39), since the standard derivation

of ^3, i = 1, 2 is substantially larger than their respective bias, it is clear that the reso-

lution threshold is mostly determined by the behavior of the standard deviation. In

order to obtain a measure of the resolution threshold for two closely spaced sources,

consider the situation shown in Fig.3. Evidently, the sources are resolvable if '3y and A

are both inside the cones C1 and C2 respectively or equivalently if Iarg ('3i)-arg(-yi) i
< Wd, i = 1, 2. Exact calculations based on this criteria turns out to be rather tedious.

But as computation results in Fig.1 show, A and "2 are usually within a small circular

neighborhood centered about -y1 and -y2. This suggests a more conservative criterion

for resolution; i.e., the sources are resolvable if ^ and A are both inside the circles c

and c2 respectively in Fig.3. In that case, the maximum value of the common radii of

these circles is easily shown to be sinWd. Thus, at an SNR satisfying

ar ("i) = I sinwd (40)

where 1 is some positive integer, using (40) we finally have the associated threshold

SNR to be

1/2

M (2 + cos 2wd) I 41 2 N (1-cs2w)sin2 12
1,K 2 2 .1+ [I+ N].. (41)

21 N(1 - cos 2wd)si Wd M (2 + cos 2 wd) (1 - Ps 12)
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This threshold SNR can also be expressed in terms of the "effective angular separa-

tion" parameter A given by [12]

A2 = M2 w2/3.

2 2For closely-spaced sources, M wd < < 1 and in that case since

6A2  6A4

cos2w d - 62 + M4 (42)

and

IPs 12 2 + 2,&4 (43)

using (42) and (43) in (41), we have
1/2

M M [ 4 M 2-- [ A 2  (44)
elK= 62N _24 _A2J[+ l 21 j544

Notice that calculations for Var (^ ) in (39) has been carried out for L = K (= 2)

case and hence the above threshold expression also corresponds to this least favorable

configuration, which only uses part of the available signal subspace eigenvector infor-

mation in its computations. When higher value of L is used to evaluate ^ , the

corresponding threshok xpressions also should turn out to be superior to that in

(41). These conclusions are seen to closely agree with results of simulation presented

in Table 1. Similar threshold comparisons are carried out in Fig.4 for the MUSIC

scheme and the GEESE scheme. In the case of two uncorrelated sources, by equating

the actual bias at the true arrival and middle angles Kaveh et al. has shown the resolu-

tion threshold for the standard MUSIC scheme to be [121

1/2

1 20(M -2) 1 +[I + N A] 2 ] (45)FM sc g 44 )2 A .Fo Tb 1

Fig.4 shows such a comparison using (44) with I = 2 and (45). From Table 1, the
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corresponding SNR values are observed to have at least 30 percent probability of reso-

lution.

Case 2 : The Most Favorable Configuration (L = M - 1)

For L >K, the situation is much more complex and the estimator, ", i = 1, 2 are

no longer unbiased within 1/N approximation. The exact bias and variance expres-

sions can be computed by proceeding as in Appendix B. These computations have

been carried out for the most favorable configuration (L = M- 1) in a single-source

scene as well as a two-source scene and the results are summarized below [18].

A. Single-Source Scene

The mean and variance of the generalized eigenvalue ^1 in this case with

E[ Iu, ]  lare

(M +2)r2 M-2 2
E [^J] = -yj +  N (M_ 1)2  + o (1/N) (46)

and

2[2(M-1)(1-l coswi)+ M . cosw+] [ ] (47)

VarN (j) N(M - 1)2  [ C2

Interestingly enough, the above estimate is biased even within a 1/N approximation.

However the bias and variance values in (46) - (47) are quite small compared to the

variance (34) in a similar situation for the least favorable configuration.

B. Two-Source Scene

Once again, starting with (A.1), after a long series of algebraic manipulations, the

mean and variance of the generalized eigenvalues ^ , i = 1, 2, in two equipowered

uncorrelated source scene can be shown to be

E AMeJIIi____1M i 13 T(M,Wd) + r12Mwd) (48): ['31 =](M 6



-75-

where

ri(M,WOd) =pie + qie + ri  ; i =1,2.

and the constants pi, qi, ri; i = 1, 2, are as given in Appendix C.

Var + i =1, 2 (49)
N

where

1(MA 2)  2M 5  3 2 1 1 14 123 1 7 - 15 +9

W(- l1)M , 2 A 4- 5- 2 M M z +

The 1/N dependence for mean and variance is clearly evident in the simulation results

presented in Fig.6. The associated threshold SNR in this case can be obtained with

the help of (40) and (49) and this gives
1/2

- M 2v(MA) + 212N (M-1)A 2 (50)etM-1 612N L + 11+ M 5(M 2 -2) ( I

For the same source scene and probability of resolution discussed in Fig.4, new

simulation results are presented there for this most favorable configuration. As

remarked earlier, the SNR required to resolve two sources in this case is seen to be

substantially smaller than that in the former case (L = K). In particular, to resolve

two closely spaced sources under identical conditions, in terms of input SNR, the most

favorable configuration seems to require about 12dB less compared to the MUSIC

scheme and about 18dB less compared to the least favorable configuration. Once

again, utilization of all available information in this (L = M - 1) case may be attri-

buted to its superior performance. Fig.5 shows a new set of comparisons for another

array length. From these results, it may be reasonably concluded that when all avail-

able signal subspace information is exploited, the proposed algorithm outperforms the

MUSIC scheme.



- 76 -

IV. Conclusions

This report analyzes a technique for estimating the directions-of-arrival of corre-

lated signals by making use of certain matrices associated with the signal subspace

eigenvectors of the array output covariance matrix. This is based on the well-known

property that in the case of uncorrelated and identical noise field, the subspace

spanned by the true direction vectors is identical to the signal subspace (i.e., the one

spanned by the eigenvectors associated with all, except the lowest repeating eigenvalue

of the array output covariance matrix). Using a first-order asymptotic analysis, it is

shown here that the angle-of-arrival estimator in its least favorable form is unbiased

and has nonzero variance in a two-source scene. Although the estimator in its most

favorable configuration turns out to be biased, the associated resolution threshold in

an equipowered two-source scene is shown to be substantially smaller than that

corresponding to the standard MUSIC scheme. Similar comparisons can be per-

formed in a coherent scene by first employing the standard forward/backward

smoothing technique to decorrelate the signals followed by the method described

here, to estimate their actual arrival angles. Once again, performance comparisons

can be made for a two coherent source scene after working out the asymptotic results

in a similar manner.
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0-

-

-1 0 1
(a) GEESE scheme with L =K

1

-1-

SI I

-1 0 1
(b) GEESE scheme with L =M - 1

Fig. 1. Simulation results for a mixed-source scene. Three sources are located at 30,
50" and 700. The first two sources are uncorrelated and third source is correlated with
the first and second sources with correlation coefficients 0.5+jO.29 and 0.21+jO.43,
respectively. A ten-element array is used to receive the signals. Input SNR is taken
to be 10dB. (number of simulations = 50, number of samples = 100)
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0-

bias

o variance

-1-

log(BIAS)
log(VAR)

-2-

-3I I
1.75 2 2.25 2.5 2.75

log(Number of samples)

Fig. 2. Bias and Variance for the least favorable configuration (L =K (=2))
Bias and variance vs number of snapshots for two equipowered sources. A ten
element array is used to receive signals from two sources located along 450, 500 with
common SNR = 5dB. Here L = K (=2) and each simulation consists of 100
independent trials.
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C,

Cl C2

Wd

Fig. 3 Resolution Threshold Analysis
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Table 1

Resolution threshold and probability of resolution vs. ang lar separation for two
equipowered sources (K = 2) in an uncorrelated scene. (number of sensors M =
7, number of snapshots = 100, number of simulations = 100)

angles of angular SNR Prob. of Resolution

arrival separation MUSIC GEESE

0 , 02 2w _ L =K L =4 L =M-1
4 0.14
5 0.21
6 0.33
8 0.54

16 0.12 0.64 0.98
25.00 30.00 0.1265 18 0.19 0.19 0.77 1.00

19 0.31 0.20 0.84
20 0.42 0.20 0.89
21 0.63 0.20 0.96
22 0.71 0.25 0.98
23 0.80 0.31
24 0.91 0.40

0 0.27
1 0.31
2 0.43
3 0.57
9 0.09 0.58 0.99

40 Or) 45.00 0.1852 11 0.12 0.16 0.77 1.00
12 0.30 0.17 0.83
13 0.32 0.21 0.91
14 0.48 0.23 0.94

15 0.73 0.26 0.97
16 0.75 0.30 0.09
17 0.84 0.31 1.00
.5 -0.19

-4 I0.231
3 0.35

0.51
1 0.22 0 57
0 0.28 (1.66
4 0.08 0.66 0)S

75. () I0()- /7267( 0.29 0.11 0.85 1.00
7 0.41 0.12 0.S7
8 0.57 0.10 0.92
0 0.74 0.22 ().)4

In 0.81 0.25 0)7
11 O092 )3) l))
12 099O ().5)
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... GEESE scheme with L =K and I = 2 using (42)
o GEESE scheme simulation with L =K

- GEESE scheme with L =M - 1 and I = 2 using (48)
GEESE scheme simulation with L =M - 1

-- MUSIC scheme using (43)
a MUSIC scheme simulation

INPUT 20" 
.

THRESHOLD 0

SNR (dB)

(/M) 
10 

.

0-

0.1 0.2 0.3

ANGULAR SEPARATION

Fig. 4 Resolution threshold vs angular separation for two equipowered sources. A
seven element array is used to receive signals in both cases. One hundred snapshots
are taken for each simulation. In each simulation, the associated probability of
resolution is 30 percent.



- 82 -

..... GEESE scheme

0.8 - MUSIC scheme

0.6-

L =4:" : ':

0.4- L =3'"

L =2..-'

0.2

0- II*
0 10 20 30 40 50

Probability of Resolution vs ASNR (dB)

Fig. 5 Probability of resolution as a function of ASNR for two equipowered sources.
Angular separation (w-cW2) is taken to be 0.1 rad. A five-element array receives
signals and one hundred simulations with 100 snapshots are used to obtain the
probability of resolution for each ASNR. In each simulation, two sources are
considered resolved if simultaneously jag,(j,.) - arg(,yi)l < w , i = 1, 2 for the
proposed GEESE scheme and Q(woi ) < Q(wm) , i = 1, 2 for te MUSIC scheme.

Here Q( ) = 12.

i =K+1
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0-

-1 -. bias

variance

log(BIAS) -2
log(VAR)

.3 -........

.......... 
." ....... 

*.....

-4
1.75 2 2.25 2.5 2.75

log(Number of samples)

Fig.6 Bias and variance for the most favorable configuration (L =M - 1)
Bias and variance vs number of snapshots for two equipowered sources. A ten
element array is used to receive signals along 60, 650. In each simulation, the SNR

taken to be 3dB. Here L =M- 1 and each simulation consists of 500 independent

trials.
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Appendix A

Single-Source Scene Analysis

With ci , i = 1, 2, "", K representing a certain set of normalized estimated

eigenvectors associated with the signal subspace eigenvectors ,0l, P2,  O /K from

[12, 16, 17], we have

ci =k[ + " w ji j ] + o(1/N2) (A.1)
j =1
jti

where

1 M 2ki 1 -' -f I wji (A-2)
j=1
j 7ki

Here w/j, i = 1,2, "" ,M, j = 1,2," ,K are zero mean, asymptotically Gaussian

random variables with

E[wi bik 6, ; i 6j and k yl (k3)

and

E[wi wk, - b6ijk " i j andk f L (A.4)

In a single-source scene, the eigenvector corresponding to the largest eigenvalue

of the array output covariance matrix is

P1 = [1311'-321' . #M 1 -O.-1)]T (A.5)

\/"-A [1,g t , "",U5

and from (A.1) the estimator for , is given by

c1 =k[1J1 + V-j-- w. l j ] + o(1/N2 •  (A.6)
j=1
j~1
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This gives SY to be

fl (011 +(f j =I +j )/ { 21 (1 + j1

j~l j~l

1 M
For I '=  w 102j /0211 << 1, we can simplify (A.7) as

j=l

A 1 - Mj M _ M M 21
-^1=  )31 + VVEwi ifi N1- E Wj 1#2j /021 + N-Z W 1wi 02j /02

)2 =1 -= i=lj=l

1 1 _ _

1+ 1r + _-I21 + o (11N 2)  (A.8)

where

M -21] (A.9)

j=1
jr1

M M Pi2/21] (A. 10)

i=lj=l

Since the limiting joint distribution of wij, i = 1, 2, , M, = 1, 2, ,K tend to be

normal with zero-mean and the odd-order moments of zero-mean Gaussian random

variable are zeros, the expected value of F,1 is zero. Thus,

1 2

N= + 1 + o(1/N2)

-, + N E Iw, w -11 3113 i2j /02 1 - ,31i1/02 o(1/X).(Ao(])
i=1J1i lj l
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With (A.4) in (A.11)

E[ =" + °(1/N2), (A.12)

which is an unbiased estimator for -y1.

Further, with the help of (A.8), (A. 12), we get

1 2Vr'Yj) = E [ =llr,+ 2

-E[ rr + N2K Re(rr 1) ] + o (1/N 2). (k 13)

The term inside the expected operator can be written as

1 r + 2 R e(rlr )r 1 r 1 + NV e r2l)

1 M 
2 *

wiVwE E W, 0i /321 - 13n3110],31-'A 11)32jl3 A

i=1j=1

2 [rM M.. & SIQ S n s

N2 R e  W* 0 W- 2 3 - 2j (A.14)
NVN kI it jI_1*

kli=l j=l 021 )321 )3 21 1321

Once again noticing that the odd-order moments of zero-mean Gaussian random vari-

able are zero, we have

Var(-,)= N E iwi [i3 /21-)3 32il , -I3 fl1232j1j32 +o(1/N 2 ).
i=lj=1

(A. 15)

Using (A.3) in (A. 15) and with (A.5) we have

1 M MAjAk 2
Var( l) = 2N E 1 1, - 0/021

k =2 (A, - A)
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MA 2 M[ 2 + 1p. 12 - e(t,/ )] +o (1/N). (A16)
N (A1  2)2 k2

To simplify this further, notice that

ME Pik Pj = bj, i = 1, 2, ..,M and -1, 2, ..,M. (k17),
k=1

(A. 17) together with (A-5) gives

2 2= 1 1(A 18E 3 10 I It'z2k I - AMS

k=2 k=2

and

M -1
E f3f = -1 /IM. (A.19)

k=2

Finally, with (A. 18)- (A.19) in (A. 16) we have

2MA1 a 2

Var () = + o (1/N). (A.20)

N (A1 - 2)2
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Appendix B

Two-Source Scene Analysis

For two equipowered uncorrelated sources, the eigenvectors in the signal sub-

space of the array output covariance matrix are given by [12]

u I ± u2

ST) for Si(Mwd)>O , i =1,2 (B.1)

where
,x (M - ),,, sinMwd ( 'W

Ps 
= at(w,)a(w2) = e M sin wd =e Si(Mjd) (B.2)

and
U=A M - 1) / 2 a(w1) M - 1)/2 a(w2) (B.3)

with a(w) as defined in (4). Using these eigenvectors and with the help of (19) -(21)

and L -- K, we form the matrix pencil { B1, B2 } and compute the generalized eigen-

values of this matrix pencil; i.e.,

)31 )312' 1 21 022 11 - '1/21 81 2 - _/ 022
--I = 0 (B.4)

1)321 022- 1-'31 )332- )21 - 10 3 1 322 - _Y0 32•th.t

where flij represents the i element of the I eigenvector. Then, (B.4) can be

simplified as

A1 '1 - A2"Y + A3 = 0 (B.5)

where A, A 2, A3 are the determinants defined as

021 822 Oil 812 01l1 )312
AA A A

Al = , A2 = , A3 =(B.6)

I31 032 031 032 021 122

From (B.6) and (B.1)-(B.3), we find the following useful identities

A3 = 2- 211 = -)/2 (Af - 1)/2 -1 1
11122 22 M( -12 12)1/2 A 2 ( l -('A,2 (B.7)
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A2 = 11032 - 0310~12 = A3(AI + A21 (B.8)

l= 82132 - 031022 = 1 1 (B.9)

Further, using the above relations, the discriminant of (B.5) can be expressed as
A 2 2-1 -1 2.

3D4 - - g 2 ) (B. 10)

Thus, the roots of (B.5) are given by

A(1 1 + 2) A 3 (A.1 1- P2
1)

2 A3 A-1 -1 Ill1 or /J2  (B.11)
2A3jt1

Here, -1 = p2 corresponds to + sign and -y = A, to - sign.

Now, with the help of the equalities (B.7)-(B.11), we consider the estimated

case. From (A.1), we have the estimated eigenvectors corresponding to the signal

subspace as

A M 2Ci =  IAl + "VN E wj i pj ] + o°(11N2 i = 1, 2, "' K. (B. 12)

j =1

where k. is defined as (A.2). In a two-source scene, the generalized eigenvalues of the

estimated matrix pencil { E1 , E2 } given by

[ell e 1 2 ] 1 e21 e 22 '

. (B.13)
e 21 e 22 J [e 31 e 32 j

Sincee i = ci e , i = 1, 2, • • • , K, the above equation reduces to

AA

C 11 - C 2 1 C 12 _ YC2 2
A .

2  
A A A

A=I -_ A21 + 3 -0 (B.14)

C21 - fC 31 C22 - C32

In (B.13) and (B.14), ei1 and 64 represents the i'h elements of the estimated eigen-
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A. A ,A

vectors ej and 81, respectively. Following (B.14), define A, 1, A3 as

e21 e22 ell e12 ell e12

A , A , A (B.15)

C31 e32 e3l e32 6'21 e22

To fine a first-order approximation for A1, A2 and A3, we begin with the interele-

ment multiplication of c~i, i = 1, 2. This can be written as

2= k1 WjlIpjflq2 + E Wj23qj

e 1 q2k 1 2 p 1 13 q 2 + j M -1 jP 2 P ]j= j=l

'1 M 

+ N WklWI2Ipk/Ij + o(1/N2). (B.16)
k=1 1=1
k,*1 1,*2

With (B.16) in (B.15), we have

A = e21 '32 - 3122

1 2 [+j=l

j1 j p2

1 M Ml1

+ N E WklWI 2(I02k3
1 - 03k 02J) + o(1/N 2). (B.17)

k=1 =1

Defining

AijkI P fik fljl - l ik 1id (B. 18)

(B.17) can be written as

= + + ' 21 + o(1/N 2) (B. 1N)
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where

M M
r 1 = Ya WjlA23j 2 + E wj 2 A3 2j1  (B.20)

j=1 j=1
j j 2

M M

r2= E E WklWI 2AM. (B.21)
k=1 1=1

Similarly, we have

A2 = kk24A 2 + }-L'12 + r22 + o(1/N2 ) (B.22)

A 3 = ktk2A 3 + .31+ + o (1/N 2 ) (B.23)

where

M M
IF12 = WjIA 13j2 + E Wj2 A 31i1  (B.24)

j=1 j=1j =kI j f=1j~t jt:2

M M
F 3 = I w1 A12j 2 + E wj 2 A21jl (B.25)

j=1 j=1
j,1 j 2

M M M M
F22 = E WklWl2Al3kl ; F23 = E WklWI 2 A2kl "  (B.26)

k-I I= k=l I=1
k yklI 1 2 k 1l/,-2

The generalized eigenvalue of (B.14) within a first-order approximation can be

found by using (B.19)-((B.26). To see this, let

= 4 + -F2, , i = 1, 2, 3, (B.27)

and with (B.14), (B.19), (B.22) and (B.23), the generalized cigenvalues have the form
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A 2 -4AA A 1/ 2

Ai

2A/2

( A 2  + 1 2 ) --A z  4 A A 3  + 2 A 2 1 2 + r 2 _- 4 ( A 3 1 r 1  + A 3  + r j1 3 ) J 1

(B.28)

2Al(1 + L1 /A 1)

Here, r i defined in (B.27) represents the perturbation of Ai from A i and for large N,

from (B.19) and (B.27) noticing that I1 /A1 I << 1, we can rewrite (B.28) as

1/21 [(A +r) [D[1+ 2A2r2 % 12+2 ,+A 3 + 3 )

- 2A 1  D

12x - +2 
(B.29)V i A1A2

where D is given by (B.1O). Once again, for large N we have

~2~2 + 2~ - 4(A 31r1 + AIr 3 + 113)
< 1 (B.30)

D

which allows one to further approximate (B.29) as

2A1  A1  A1J

2v~'- 2 ±-[2A2 12 +I'-(12A 1 3 F1 ')

A
A ±I 

- -- + 
r 2

4AA'D Al  A J

[2A2 r2 + + - 4(A Fr + A11 3 + r,3) 1 r
2_ _ _ _ _ 

22 2 
21r) 2] 1'

I -(- + -- (B.31)
16ADv/ A1 A2
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Neglecting terms formed by combinations of triple products of rl, r2 and r'3, (B.31)

reduces to

2 (/D A2) 2  2(A 3 r I + A1P3)r I  + 2r All+3)
-i -= (1 - -k + - ) +

2 2

(vf _ A2)r1r 2 T- + A 1 r/4) [A22- 2A3r - 2A 1,3] 2

4AD'7h(B.32)
2A2x/'-f 4A1DvD -

Finally, using (B.27) and retaining only those terms of order greater than or equal to

1/N, we have

,,1 1 1
Af 4D N+ 0 NVF (B.33)I/i - "/i + -vl-- i N ¢2i + O( -- (.3

where

ii + (V- -  -± A )1 r2 T 2(A 3" 11  + A l 13)
¢i=-- " + (B.34)

A1  2AlV/D

and

Y/i 'i 2 (v/T _± A2)F22 T 2(A1,r21 + AF23)

2"21 + 121 2Ax/
A1  A21

(VD- ± 2)rllr2 2(A3 111 + nicE2/4) [A2F1 2 - 2A3r - 2A1 13]
___ ___ __ ___ ___ __ ___-__ _ - _ _ _ _ _ _ _ _ _ _ _- (B.35)

2A 2V/" 4A 1D V

(DU and DI in (B.34)-(B.35) can be further simplified with the help of (B.7)-(B.11).

For i = 1 and -1 = P, we have

(11 = - 1 [4r2I - A21I2 + 11 (B.36)

and
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4 22 + r23 r 2-) -+ -1 1 ( - 2)

1 +/-)2- 2 11+ - 2it_ - ]2

2 -1 -11 (B.37)
3 AlIL2(A 1 -( 2

Similarly, for i = 2 and -y2 = A we have

.(2 =  1 [/r -/zr12 + r3] (B.38)
12 (: 1 11 13)

i I 2:- + r A 24, - u1 r r 2 + /4

4D22 = 1 2 3 1 1 1 1

-11 2 -1-1 -  -1
A3(AZI-/12 3Al A(2Z 1 _A.2)

+ 'P )r12 - 21'I 2/l 1 2 1r13]2

+ 1 3 (B.39)
4 2 - -, - 1-)3

From now on, with the statistical properties derived in [16, 17], we compute the

mean and variance of the estimated generalized eigenvalues. Consider the first gen-

eralized eigenvalue, % .Then, from (B.33), the expected value of 3 is

I 1(B0
/I7 + -I'E[-tn] + NvE[4b21] + o ( -) (B.40)

With (B.20), (B.24) and (B.25), it is easy to verify that E[¢lPj ] consists of the first-

order moments of wi which gives E [1I] = 0 and hence

E[ = + '-E¢21 + O(N rF)

- . 22 + r23] E [4r1 2 - A.yr 12 + r22/4]

1 2 -1 -N 3(/Zl" -. 7) N~s 2  1&- '-i7-

E [ [ ( A _' + ') r , -2  - 2 , -2 , 1 -' r ,3 ]2 ]

4NA ''' )3+ o(N\' '). (B.41)4NA 2 Z-1 -1 (AZ-,_- I ) 3N N

..... ~ ~ ~ ~ ~ 3A A 2 Iia A2imr m m i
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With (B.21), (B.26) and (B.26), the terms inside the first expected operator can be

written as
M M2

2r2l - .2 + r23 = 1 WI klwI2(MA2 AM - PA3 + A1h 1 )" (B.42)
k=1 1-1k~kl I,'l

With (A.4) in (B.42) we also have

M M 2
E [/,22 - A 2r 22 + r23] = E E[wk lw, 2 ]( 2 Ak - pAl3k + A2M )

k =11-1
kjoI1 #~2

- A2 - P2 AM321 + A 122 1) = 0 (B.43)

since, from (B.18), (B.7)-(B.9), it is easy to show that A2321 = Al A 132 1 = A 2 and

A12 2 1 = -A 3.

Also, with (B.20) and (B.24), we can write

M M
P. r,2 - r12/2 = Wj 1(P2A 23j2 - A13j 2/2) + E wj 2 (A2 A32jI - A 31j 1/2)

j-1 j=1
j~l j*2

E (WjI(92A 23j 2 -A 1 3j 2 /2) + Wj2 (/2A32jI-A 3 1j 1/2)) (B.44)
j=3

since from (B.18)

Aijk =0 for k =1. (B.45)

Hence, together with (B.44) and (A.4), we can easily show that

EI[242, - rr,,4r 2 + = 0. (B.46)

Similarly, for the exnected vahle of the last term in (B.39), with (B.20), (B.24)

and (B.25) we can write
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(,- + PL. 1)r7 - 2X1- 2/il IA 1 13

+ - ) '13  2  - 2A.11 7 2. i 1 12i 2)
j=1

jr,1

+ F, W (4 - + Pi2  )A31 j 1 - 2A32j 1 -2As17 92A621j 1)
j=1
jp2

j=3

+ Wj 2 ((JU1;1 + A2i')A 3 1jI - 2432i 1 - 2/1'471A211) )J (B.47)

Here, once again we use the fact of (B.45). Then, with (B.47) and using (A.4), it can

also be shown that

E[[(1-' + P- 1 )r12 - 2r,- 2 '11P2-1r13]2 ] = 0. (B.48)

Finally, with (B.43), (B.46) and (B.48) in (B.39), we obtain

E[HI, = + 1 1 (B.49)

Thus, within a first-order approximation, the sample generalized eigenvalue ^ is an

unbiased estimator for 7y.

With the help of (B.33), (B.36), (B.20), (B.24) - (B.25), and some algebra, it is

easy to compute t' ir variances. Now, with (A.3)

Var(A%) = 2E[ I<I2 ]

-L I Il
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1 [M Mj
2 -1 -1 2 E E E[ i .lwjl ]lit"1

N IA 3[ '1 l --/2 1 lj=1

MM M M M M

+ E E[w1 wj2 ]lIIj + E E EIwi 2w;1 ]IKij. + E E E[,.w z P 2 ]I,.II
i=lj=l i=lj=l i=lj=1
i # 1j t2 i#2j#1 i lk2 j y2

1 A A I i M1 + i  1, 2 (B .50)

2-1. (-1 2 ,)2  i_ (,2  A) 2IA3l1 I 1  -A2 I l (A,-2

where

lj = /A 23j2 - P-A 13j 2 + A12j2  (B.51)

I/- = A2 A321Z - 12A31j 1 + A211j. (B.52)

Also, from the definition of AijkI in (B.18) we notice that I. in (B.51) is zero for j = 2

and I/. in (B.52) zero for j = 1. Therefore, with A3 = A4 = = AAM = a2 (B.50) is

simplified to

Var. (^. ) =  - I - M l A o 22 2 Hi2[(.3

2 122 2 2_ -lI [l,' 2i= -- 22''' + -- 211i (B.53)
NIA3121 -pI i=3 .(A, -a2) (X2 -)

Now, we evaluate i and H1i from (B.18) and (B.1). First,

2
Ii = , 2 A23i2 - P2A13i2 + A12i2

2
= A? i2332 - ON3/22) - P(/01 32 - 33i/h12) + (0022 - '320312)

(M - 0 2 1 -1
1 [2Pt-A Il-- 1  -( 1  ( + + P3i] (B.54)

V2M (1 - 1Ps I)
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Also, from (B.52)

IPi =".'A2i1 - P-ZAlil + A621il

(M - 1)/2 2( - d

-1 , t1'/ 1 i - (21 + Al 1 )82i + 03i1 " (B.55)
V2M(1+ PT5 I)

(B.53) together with (B.54), (B.55) gives

Va2 __ Ala 2 +

NA 3 12[(Al 2)2 2M(1p., 1) (A2_a) 2 2M(l+ Ips1)

M . -I -pi_ -I+U-1 )#i+pi1
E p.l1131 i - + sj)3J + 3i (B.56)

i=3

Replacing A3 with (B.7), this gives

Var(Al) = M _ 1 + ) a ) + -s 2 2

2NI - 1 - P7112 21- I (A2 -a

M 1 , _ _1 _1 21 12Mi - P + +l )32' +/33 N (B.57)

i=3

To simplify this further, notice that

M
E 3ikj3k = 5ij , i = 1,2, ",M andj = 1,2, .,M. (B.58)
k=1

For i = j - 1, (B.58) together with (B.1) gives

M I l 1 - 2 [1 -lpsIRe(i M -1)/2 - (M - 1)/2) ]  (B.59)
2 p e1 92  (.9

SM(1 - 1P, I')

Similarly,
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M I~.21 2 2 [ p, Re( 1 M 3 )/ 2 (M-3)/2) (B.60)
k=3 M(1 - [ps I')

and

M 2 =r [ -p ej (M -5)/2 -(M -5)2 (.1F, 103k 1 I-p (sp2 1)2] (B61
k-=3 M(1 - Ips I

Also, for i = 1, j = 2 we have p(A- 1//2 a

(Ul + P2 ) - IPs ('uI(M - 3)/24M - 1)/2 + M1)/2 -( 3/2

k=3 M(1 - Ip, I)

(B.62)

u, + A2) I I,101 -(M -5)/21 -3)/2 + u (M-3)/2 -(M-5)/2

k=3 M(1 - lps 12)

(B.63)

and

-2 + -) _ I i -(M -1)/2 -) + M - 5)/ (Af - 1)/2
M 1~' +2 )IIt 1  12 /2 M P2)

E f03k,3Lk-
k =3 M(1 - ps I2)

(B.64)

With (B.59) - (B.64), the last term in (B.57) can be written as

M (+-1 2

E2 I t 2/ P - 2 + -) • 03 I
i=3

= A [;i6, 12+ 1 2+ -1 2 2 2Re,L'p 1
=E In, P2 lIg 1+2 I~aI + 1I63i 1l -2e Pf-/2-(At + P2),3ufl5'
i=3

+ - +2 1)#2i 0 -. UP2/ .1/ 11

= 4 + 2Re(,U-'t). (B.65)
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Finally, using (B.65), (B.57) reduces to

M (2+Re(At1 1) A A2
Var(, 2)= [ -- (+1p,)+ (1- P) 1) (B.66)2N(1-Re(AI-'g)) ( lg) (X2-or )I

The mean and variance of ^2 are identically the same as that of ^ and the covariance

between Ayj and "2 is given by

M a2 (2+Re('~t)
Mc (-',-2) = - (2 + _2) (M - 5)/2 -(M - 5)/2
2N ( 1 - Re(A, jz2) )

(A A2

(A1- 2 l p -(2 - 2(i-I (B.67)
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Appendix C

Bias Constants in a Two-Souce Scene

p, = (3M 3 -12M 2 +15M-6) +

(0.704M -4.206M 4 + 8.793M 3 -4.195M 2 -27.194M +81.592 ) w +

(0.0642M 7 _ 0.42M6 + 0.945M 5 + 0.377M 4 - 6.937M + 53.93M 2

4 6

-61.517M+12.417)wg + o(wd)

q= (3M 4 - 18M 3 + 39M 236M + 12) +

(0.2M6 -2.6M5+ 11.45M4 -29.3Ma+38.95M2 +46.5M -212.98 )w 2 +

(0.078M 8 -0.804M 7 +3.54M 6 -9.48M + 18.66M4 -33.37M 3 +61.32M 2

4 6

-133.61M + 199.34) wd + o (wd)

r= (-3M4+15M3-27M +21M-6) +

0.2M6 + 1.9M 5 -6.88M 4+ 14.09M 3 -10M 2 - 69.1M +200.63)wd +

(-0.053M +0.492M7-1.884M6 + 1.535M + 10.81M 4 - 45.02M' + 78.99M 2

4 6-26.29M-80.3 1 )w, + o(wd)

P 2 = (6M -24M 2+30M-12) +

(-0.602M +3.606M 4 -14.406M +33.601M 2 -107.398M + 229.2 ) 2 +

(0.2572M 7 - 1.89M 6 +6.235M - 10.309M 4 -0.697M3 +50.68M'

-117.78M +70.12)w, + o(wd)
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q2 = (6M4 -36M3 + 78M2 272M + 24) +

(-0.602M'+ 3.806M' -9.115M4+ 11.41M'-27.6M 2 + 186M -445.96 ) w +

(0.173M - 1.702M7 + 3.988M- 17.22 1M + 30.96M 4 - 64.43M + 144.98M 2

-264.61M +398.12)w 4 + o(wd)

r 2  (-6M 4+30Ma3-54M 2+42M - 12) +

(0.602M 6 -3.213M 5 +5.5 M 4 -3.833M 3 +42.233M 2 -116.25M + 493.5 ) 2 +

(-0.173M + 1.446M 7 -5.035M +5.226M 5 + 17.42M 4 - 81.96M 3 + 167.84M 2

4 6134.45M - 102.28) uwd + o (wd )



-103-

References

[11 V. F. Pisarenko, "rhe retrieval of harmonics from a covariance function," Geo-

phys. J. Roy. Astron. Soc., vol. 33, pp. 247-266, 1973.

[21 R. 0. Schmidt, "Multiple emitter location and signal parameter estimation," in

Proc. RADC Spectral Est. Workshop, 1979, pp. 243-258.

[3] R. Kumaresan and D. W. Tufts, "Estimation the angles of arrival of multiple

plane waves," IEEE Trans. Aerosp. Electroon. Syst., vol. AES- 19, Jan. 1983

[4] G. Bienvenu, "Influence of the spatial coherence of the background noise on high

resolution passive methods," in Proc. IEEE ICASSP-79, Washington, DC, 1979,

pp. 306-309.

[5] G. Su and M. Morf, 'The signal subspace approach for multiple emitter location,"

in Proc. 16th Asilomar Conf. Circuits Syst. Comput., Pacific Grove, CA, 1982, pp.

336-340.

[6] J. E. Evans, J. R. Johnson, and D. F. Sun, "Application of advanced signal pro-

cessing techniques to angle of arrival estimation in ATC navigation and surveil-

lance system," M.. T Lincoln Lab., Lexington, MA Rep. 582, 1982.

[7] T. J. Shan, M. Wax, and T. Kailath, "On spatial smoothing for estimation of

coherent signals," IEEE Trans. Acoust., Speech, Signal Proc,.J.azg, vol. ASSP-33,

no. 4, pp. 806-811, Aug. 1985.

[8] H. Wang and M. Kaveh, "Coherent signal-subspace processing for the detection

and estimation of angles of arrival of multiple wide-band sources," IEEE Trans.

Acoust., Speech, Signal Processing, vol. ASSP-33, no. 4, pp. 823-831, Aug. 1985.

[91 A. Paulraj, R. Roy, and T. Kailath, "Estimation of signal parameters via rota-

tional invariance techniques - ESPRIT," in Proc. 19th Asilomar Conf , Pacific

Grove, CA, Nov. 1985.



-104-

[101 R. Roy, A. Paulraj and T. Kailath, "ESPRIT - a subspace rotation approach to

estimation of parameters of cisoids in noise," in IEEE Trans. Acoust., Speech, Sig-

nal Processing, vol. ASSP-34, no. 4, pp. 1340-1342, Oct. 1986.

[11] R. Roy and T. Kailath, "ESPRIT and total least square," in Proc. 21th Asilomar

Conf. , Nov. 2-4, 1987.

[12] M. Kaveh, and A. J. Barabell, 'The statistical Performance of the MUSIC and

the minimum-norm algorithms in resolving plane waves in noise," IEEE Trans.

Acoust., Speech, Signal Processing, vol. ASSP-34, no. 2, pp. 331-341, Apr. 1986.

[13] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, John Wiley

and Sons, Inc., New York, 1980.

[14] I. S. Reed, "On a moment theorem for complex Gaussian processes," IRE Trans.

Infonn. Theory, pp. 194-195, Apr. 1962.

[15] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd ed.

John Wiley and Sons, Inc., New York, 1984.

[161 S. U. Pillai, and B. H. Kwon, "Performance analysis of MUSIC-type high resolu-

tion estimators for direction finding in correlated and coherent scenes," submit-

ted to IEEE Trans. Acoust., Speech, Signal Processing.

[171 R. P. Gupta, "Asymptotic theory for principal component analysis in the complex

case," . Indian Stat. Assoc., 3, pp. 97-106.

[18] B. H. Kwon, "New high resolution techniques and their performance analyses for

angle-of-arrival estimation," Ph.D dissertation, Polytechnic University to appear

in Spring, 1089.



FIL ED

Im 3E) I

TIC


